CYCLIC LENGTH IN THE TAME BRAUER GROUP OF THE FUNCTION FIELD OF A p-ADIC CURVE

被引:4
作者
Brussel, Eric [1 ]
McKinnie, Kelly [2 ]
Tengan, Eduardo [3 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93405 USA
[2] Univ Montana, Dept Math Sci, Missoula, MT 59801 USA
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Paulo, Brazil
关键词
DIVISION-ALGEBRAS; PERIOD;
D O I
10.1353/ajm.2016.0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be the function field of a smooth curve over the p-adic number field Q(p). We show that for each prime-to-p number n the n-torsion subgroup H-2 (F, mu(n)) = (n) Br(F) is generated by Z/n-cyclic classes; in fact the Z/n-length is equal to two. It follows that the Brauer dimension of F is three (first proved by Saltman), and any F-division algebra of period n and index n(2) is decomposable.
引用
收藏
页码:251 / 286
页数:36
相关论文
共 27 条
[1]  
Albert AA, 1936, T AM MATH SOC, V40, P112
[2]  
[Anonymous], DEV MATH
[3]  
[Anonymous], 2002, OXF GRAD TEXTS MATH
[4]  
[Anonymous], 1995, P S PURE MATH
[5]  
[Anonymous], 2002, AZUMINO ADV STUD PUR
[6]  
[Anonymous], 2003, U LECT SERIES
[7]   Indecomposable and noncrossed product division algebras over function fields of smooth p-adic curves [J].
Brussel, E. ;
McKinnie, K. ;
Tengan, E. .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4316-4337
[8]  
Brussel E, 2015, T AM MATH SOC, V367, P3299
[9]   TAME DIVISION ALGEBRAS OF PRIME PERIOD OVER FUNCTION FIELDS OF p-AMC CURVES [J].
Brussel, Eric ;
Tengan, Eduardo .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (01) :361-371
[10]  
Grothendieck A., 1960, PUBL MATH-PARIS, P228