Replicability, Repeatability, and Long-term Reproducibility of Cerebellar Morphometry

被引:18
作者
Soeroes, Peter [1 ,2 ]
Woelk, Louise [1 ]
Bantel, Carsten [2 ,3 ]
Braeuer, Anja [2 ,4 ]
Klawonn, Frank [5 ,6 ]
Witt, Karsten [1 ,2 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Dept Neurol, Heiligengeisthofe 4, D-26121 Oldenburg, Germany
[2] Carl von Ossietzky Univ Oldenburg, Res Ctr Neurosensory Sci, Oldenburg, Germany
[3] Carl von Ossietzky Univ Oldenburg, Anesthesiol Crit Care Emergency Med & Pain Manage, Oldenburg, Germany
[4] Carl von Ossietzky Univ Oldenburg, Dept Anat, Oldenburg, Germany
[5] Helmholtz Ctr Infect Res, Biostat, Braunschweig, Germany
[6] Ostfalia Univ Appl Sci, Dept Comp Sci, Wolfenbuttel, Germany
关键词
Cerebellum; Segmentation; Parcellation; FreeSurfer; CERES; Reproducibility; OPTIMIZED PATCHMATCH; CORTICAL THICKNESS; MRI; SEGMENTATION; FREESURFER; RELIABILITY; ATROPHY; ATLAS; SCALE; ANTS;
D O I
10.1007/s12311-020-01227-2
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To identify robust and reproducible methods of cerebellar morphometry that can be used in future large-scale structural MRI studies, we investigated the replicability, repeatability, and long-term reproducibility of three fully automated software tools: FreeSurfer, CEREbellum Segmentation (CERES), and automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization (ACAPULCO). Replicability was defined as computational replicability, determined by comparing two analyses of the same high-resolution MRI data set performed with identical analysis software and computer hardware. Repeatability was determined by comparing the analyses of two MRI scans of the same participant taken during two independent MRI sessions on the same day for the Kirby-21 study. Long-term reproducibility was assessed by analyzing two MRI scans of the same participant in the longitudinal OASIS-2 study. We determined percent difference, the image intraclass correlation coefficient, the coefficient of variation, and the intraclass correlation coefficient between two analyses. Our results show that CERES and ACAPULCO use stochastic algorithms that result in surprisingly high differences between identical analyses for ACAPULCO and small differences for CERES. Changes between two consecutive scans from the Kirby-21 study were less than +/- 5% in most cases for FreeSurfer and CERES (i.e., demonstrating high repeatability). As expected, long-term reproducibility was lower than repeatability for all software tools. In summary, CERES is an accurate, as demonstrated before, and reproducible tool for fully automated segmentation and parcellation of the cerebellum. We conclude with recommendations for the assessment of replicability, repeatability, and long-term reproducibility in future studies on cerebellar structure.
引用
收藏
页码:439 / 453
页数:15
相关论文
共 64 条
  • [1] Consensus Paper: Cerebellum and Emotion
    Adamaszek, M.
    D'Agata, F.
    Ferrucci, R.
    Habas, C.
    Keulen, S.
    Kirkby, K. C.
    Leggio, M.
    Marien, P.
    Molinari, M.
    Moulton, E.
    Orsi, L.
    Van Overwalle, F.
    Papadelis, C.
    Priori, A.
    Sacchetti, B.
    Schutter, D. J.
    Styliadis, C.
    Verhoeven, J.
    [J]. CEREBELLUM, 2017, 16 (02) : 552 - 576
  • [2] The Cerebellar Cognitive Affective Syndrome-a Meta-analysis
    Ahmadian, Narjes
    van Baarsen, Kirsten
    van Zandvoort, Martine
    Robe, Pierre A.
    [J]. CEREBELLUM, 2019, 18 (05) : 941 - 950
  • [3] Aging of the human cerebellum: A stereological study
    Andersen, BB
    Gundersen, HJG
    Pakkenberg, B
    [J]. JOURNAL OF COMPARATIVE NEUROLOGY, 2003, 466 (03) : 356 - 365
  • [4] [Anonymous], 2021, R LANG ENV STAT COMP
  • [5] The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper
    Argyropoulos, Georgios P. D.
    Van Dun, Kim
    Adamaszek, Michael
    Leggio, Maria
    Manto, Mario
    Masciullo, Marcella
    Molinari, Marco
    Stoodley, Catherine J.
    Van Overwalle, Frank
    Ivry, Richard B.
    Schmahmann, Jeremy D.
    [J]. CEREBELLUM, 2020, 19 (01) : 102 - 125
  • [6] A reproducible evaluation of ANTs similarity metric performance in brain image registration
    Avants, Brian B.
    Tustison, Nicholas J.
    Song, Gang
    Cook, Philip A.
    Klein, Arno
    Gee, James C.
    [J]. NEUROIMAGE, 2011, 54 (03) : 2033 - 2044
  • [7] Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications
    Bares, Martin
    Apps, Richard
    Avanzino, Laura
    Breska, Assaf
    D'Angelo, Egidio
    Filip, Pavel
    Gerwig, Marcus
    Ivry, Richard B.
    Lawrenson, Charlotte L.
    Louis, Elan D.
    Lusk, Nicholas A.
    Manto, Mario
    Meck, Warren H.
    Mitoma, Hiroshi
    Petter, Elijah A.
    [J]. CEREBELLUM, 2019, 18 (02) : 266 - 286
  • [8] Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images
    Carass, Aaron
    Cuzzocreo, Jennifer L.
    Han, Shuo
    Hernandez-Castillo, Carlos R.
    Rasser, Paul E.
    Ganz, Melanie
    Beliveau, Vincent
    Dolz, Jose
    Ben Ayed, Ismail
    Desrosiers, Christian
    Thyreau, Benjamin
    Romero, Jose E.
    Coupe, Pierrick
    Manjon, Jose V.
    Fonov, Vladimir S.
    Collins, D. Louis
    Ying, Sarah H.
    Onyike, Chiadi U.
    Crocetti, Deana
    Landman, Bennett A.
    Mostofsky, Stewart H.
    Thompson, Paul M.
    Prince, Jerry L.
    [J]. NEUROIMAGE, 2018, 183 : 150 - 172
  • [9] Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation
    Coupe, Pierrick
    Manjon, Jose V.
    Fonov, Vladimir
    Pruessner, Jens
    Robles, Montserrat
    Collins, D. Louis
    [J]. NEUROIMAGE, 2011, 54 (02) : 940 - 954
  • [10] Timing and plasticity in the cerebellum: focus on the granular layer
    D'Angelo, Egidio
    De Zeeuw, Chris I.
    [J]. TRENDS IN NEUROSCIENCES, 2009, 32 (01) : 30 - 40