Genome-wide association study of flowering time reveals complex genetic heterogeneity and epistatic interactions in rice

被引:7
|
作者
Liu, Chang [1 ,2 ]
Tu, Yuan [1 ,2 ]
Liao, Shiyu [1 ,2 ]
Fu, Xiangkui [1 ,2 ]
Lian, Xingming [1 ,2 ]
He, Yuqing [1 ,2 ]
Xie, Weibo [1 ]
Wang, Gongwei [1 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan, Peoples R China
[2] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Wuhan, Peoples R China
关键词
Flowering time; GWAS; Epistatic interactions; Genetic heterogeneity; Rice; NATURAL VARIATION; HEADING DATE; DAY-LENGTH; ARABIDOPSIS; EXPRESSION; ORTHOLOG; PROMOTER; PROTEIN; ADAPTATION; CONSTANS;
D O I
10.1016/j.gene.2020.145353
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Since domestication, rice has cultivated in a wide range of latitudes with different day lengths. Selection of diverse natural variations in heading date and photoperiod sensitivity is critical for adaptation of rice to different geographical environments. To unravel the genetic architecture underlying natural variation of rice flowering time, we conducted a genome wide association study (GWAS) using several association analysis strategies with a diverse worldwide collection of 529 O. sativa accessions. Heading date was investigated in three environments under long-day or short-day conditions, and photosensitivity was evaluated. By dividing the whole association panel into subpopulations and performing GWAS with both linear mixed models and multi-locus mixed-models, we revealed hundreds of significant loci harboring novel candidate genes as well as most of the known flowering time genes. In total, 127 hotspots were detected in at least two GWAS. Universal genetic heterogeneity was found across subpopulations. We further detected abundant interactions between GWAS loci, especially in indica. Functional gene families were revealed from enrichment analysis of the 127 hotspots. The results demonstrated a rich of genetic interactions in rice flowering time genes and such epistatic interactions contributed to the large portions of missing heritability in GWAS. It suggests the increased complexity of genetic heterogeneity might discount the power of increasing the sample sizes in GWAS.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Dissection of the Genetic Architecture of Rice Tillering using a Genome-wide Association Study
    Jiang, Su
    Wang, Dan
    Yan, Shuangyong
    Liu, Shiming
    Liu, Bin
    Kang, Houxiang
    Wang, Guo-Liang
    RICE, 2019, 12 (1)
  • [32] Genome-Wide Association Study of the Genetic Basis of Effective Tiller Number in Rice
    Mengmeng Ren
    Minghan Huang
    Haiyang Qiu
    Yan Chun
    Lu Li
    Ashmit Kumar
    Jingjing Fang
    Jinfeng Zhao
    Hang He
    Xueyong Li
    Rice, 2021, 14
  • [33] Genome-wide association study reveals the genetic complexity of fructan accumulation patterns in barley grain
    Matros, Andrea
    Houston, Kelly
    Tucker, Matthew R.
    Schreiber, Miriam
    Berger, Bettina
    Aubert, Matthew K.
    Wilkinson, Laura G.
    Witzel, Katja
    Waugh, Robbie
    Seiffert, Udo
    Burton, Rachel A.
    JOURNAL OF EXPERIMENTAL BOTANY, 2021, 72 (07) : 2383 - 2402
  • [34] Identification of genetic loci for leaf hair development in rice through genome-wide association study
    Jiang, Hong-zhen
    Lin, Hai-yan
    Zhang, Bin
    Ruan, Ban-pu
    Yang, Sheng-long
    Zhang, An-peng
    Ding, Shi-lin
    Fang, Guo-nan
    Ye, Guo-you
    Guo, Long-biao
    Qian, Qian
    Gao, Zhen-yu
    PLANT GROWTH REGULATION, 2020, 90 (01) : 101 - 108
  • [35] Advances in genome-wide association studies of complex traits in rice
    Wang, Qin
    Tang, Jiali
    Han, Bin
    Huang, Xuehui
    THEORETICAL AND APPLIED GENETICS, 2020, 133 (05) : 1415 - 1425
  • [36] Genome-wide Association Analyses Reveal the Genetic Basis of Stigma Exsertion in Rice
    Zhou, Hao
    Li, Pingbo
    Xie, Weibo
    Hussain, Saddam
    Li, Yibo
    Xia, Duo
    Zhao, Hu
    Sun, Shengyuan
    Chen, Junxiao
    Ye, Hong
    Hou, Jun
    Zhao, Da
    Gao, Guanjun
    Zhang, Qinglu
    Wang, Gongwei
    Lian, Xingming
    Xiao, Jinghua
    Yu, Sibin
    Li, Xianghua
    He, Yuqing
    MOLECULAR PLANT, 2017, 10 (04) : 634 - 644
  • [37] Genome-Wide Association Analysis of the Genetic Basis for Sheath Blight Resistance in Rice
    Zhang, Fan
    Zeng, Dan
    Zhang, Cong-Shun
    Lu, Jia-Ling
    Chen, Teng-Jun
    Xie, Jun-Ping
    Zhou, Yong-Li
    RICE, 2019, 12 (01)
  • [38] Genome-wide association analyses reveal the genetic basis of combining ability in rice
    Chen, Junxiao
    Zhou, Hao
    Xie, Weibo
    Xia, Duo
    Gao, Guanjun
    Zhang, Qinglu
    Wang, Gongwei
    Lian, Xingming
    Xiao, Jinghua
    He, Yuqing
    PLANT BIOTECHNOLOGY JOURNAL, 2019, 17 (11) : 2211 - 2222
  • [39] Genome-wide association study reveals novel genetic loci contributing to cold tolerance at the germination stage in indica rice
    Yang, Jing
    Yang, Meng
    Su, Ling
    Zhou, Danhua
    Huang, Cuihong
    Wang, Hui
    Guo, Tao
    Chen, Zhiqiang
    PLANT SCIENCE, 2020, 301
  • [40] Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola
    Raman, H.
    Raman, R.
    Coombes, N.
    Song, J.
    Prangnell, R.
    Bandaranayake, C.
    Tahira, R.
    Sundaramoorthi, V.
    Killian, A.
    Meng, J.
    Dennis, E. S.
    Balasubramanian, S.
    PLANT CELL AND ENVIRONMENT, 2016, 39 (06): : 1228 - 1239