Analysis of throw distances of detached objects from horizontal-axis wind turbines

被引:10
|
作者
Sarlak, Hamid [1 ]
Sorensen, Jens N. [1 ]
机构
[1] Tech Univ Denmark, Dept Wind Energy, Sect Fluid Mech, DK-2800 Lyngby, Denmark
关键词
wind turbine accidents; blade element theory; blade detachment; ice throw; aerodynamic model; HAWT;
D O I
10.1002/we.1828
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper aims at predicting trajectories of the detached fragments from wind turbines, in order to better quantify consequences of wind turbine failures. The trajectories of thrown objects are attained using the solution to equations of motion and rotation, with the external loads and moments obtained using blade element approach. We have extended an earlier work by taking into account dynamic stall and wind variations due to shear, and investigated different scenarios of throw including throw of the entire or a part of blade, as well as throw of accumulated ice on the blade. Trajectories are simulated for modern wind turbines ranging in size from 2 to 20 MW using upscaling laws. Extensive parametric analyses are performed against initial release angle, tip speed ratio, detachment geometry, and blade pitch setting. It is found that, while at tip speeds of about 70 m/s (normal operating conditions), pieces of blade (with weights in the range of approximately 7-16 ton) would be thrown out less than 700 m for the entire range of wind turbines, and turbines operating at the extreme tip speed of 150 m/s may be subject to blade throw of up to 2 km from the turbine. For the ice throw cases, maximum distances of approximately 100 and 600 m are obtained for standstill and normal operating conditions of the wind turbine, respectively, with the ice pieces weighting from 0.4 to 6.5 kg. The simulations can be useful for revision of wind turbine setback standards, especially when combined with risk assessment studies. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:151 / 166
页数:16
相关论文
共 50 条
  • [1] AERODYNAMICS OF HORIZONTAL-AXIS WIND TURBINES
    HANSEN, AC
    BUTTERFIELD, CP
    ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 : 115 - 149
  • [2] AERODYNAMIC PERFORMANCE ANALYSIS OF HORIZONTAL-AXIS WIND TURBINES
    MORCOS, VH
    RENEWABLE ENERGY, 1994, 4 (05) : 505 - 518
  • [3] An overview of horizontal-axis Magnus wind turbines
    Marzuki, O. F.
    Rafie, A. S. Mohd
    Romli, F. I.
    Ahmad, K. A.
    Hamid, M. F. Abdul
    AEROTECH VII - SUSTAINABILITY IN AEROSPACE ENGINEERING AND TECHNOLOGY, 2018, 405
  • [4] Review on Small Horizontal-Axis Wind Turbines
    Kamal A. R. Ismail
    Fatima A. M. Lino
    Odenir de Almeida
    Mohamed Teggar
    Vicente Luiz Scalon
    Willian M. Okita
    Arabian Journal for Science and Engineering, 2024, 49 : 1367 - 1391
  • [5] Review on Small Horizontal-Axis Wind Turbines
    Ismail, Kamal A. R.
    Lino, Fatima A. M.
    de Almeida, Odenir
    Teggar, Mohamed
    Scalon, Vicente Luiz
    Okita, Willian M.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (02) : 1367 - 1391
  • [6] Dynamics Simulation For Horizontal-axis Wind Turbines
    Mao, Xuning
    Li, Jishun
    Liu, Yi
    ADVANCED RESEARCH ON ADVANCED STRUCTURE, MATERIALS AND ENGINEERING, 2012, 382 : 129 - +
  • [7] LARGE, HORIZONTAL-AXIS WIND TURBINES.
    Linscott, Bradford S.
    Perkins, Porter
    Dennett, Joann T.
    NASA Technical Memorandum, 1984,
  • [8] The Yawing Behavior of Horizontal-Axis Wind Turbines: A Numerical and Experimental Analysis
    Castellani, Francesco
    Astolfi, Davide
    Natili, Francesco
    Mari, Francesco
    MACHINES, 2019, 7 (01)
  • [9] New airfoil families for horizontal-axis wind turbines
    Abdelrahman, Mohammad
    Hassanein, Atef
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2012, 4 (04) : 195 - 206
  • [10] Analysis of the Passive Yaw Mechanism of Small Horizontal-Axis Wind Turbines
    Cui, Wenzhuan
    Yu, Feng
    Liu, Xiongwei
    Whitty, Justin
    2009 WORLD NON-GRID-CONNECTED WIND POWER AND ENERGY CONFERENCE, 2009, : 105 - +