The cubic nonlinear Schrodinger equation in a fluid-filled elastic tube

被引:33
作者
Duan, WS
Wang, BR
Wei, RJ
机构
[1] NANJING UNIV,STATE KEY LAB MODERN ACOUST,NANJING 210093,PEOPLES R CHINA
[2] NW NORMAL UNIV,LANZHOU 730070,PEOPLES R CHINA
关键词
soliton; nonlinear wave; nonlinear Schrodinger equation; fluid dynamics;
D O I
10.1016/S0375-9601(96)00796-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the reductive perturbation method, the carrier wave modulation propagating in a fluid-filled elastic tube is investigated. It is showed that such a process can be described by the nonlinear Schrodinger equation.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 50 条
[11]   Amplitude modulation of nonlinear waves in fluid-filled tapered tubes [J].
Bakirtas, I ;
Demiray, H .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (03) :1635-1644
[12]   Analytical treatment of the couple stress fluid-filled thin elastic tubes [J].
Hashemi, Mir Sajjad ;
Inc, Mustafa ;
Akgul, Ali .
OPTIK, 2017, 145 :336-345
[13]   ALMOST CUBIC NONLINEAR SCHRODINGER EQUATION: EXISTENCE, UNIQUENESS AND SCATTERING [J].
Eden, Alp ;
Kuz, Elif .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (06) :1803-1823
[14]   Parametric cubic spline method for the solution of the nonlinear Schrodinger equation [J].
Lin, Bin .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (01) :60-65
[15]   Pseudorecurrence and chaos of cubic-quintic nonlinear Schrodinger equation [J].
Zhou, CT ;
Lai, CH .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06) :775-786
[16]   On Solution of Nonlinear Cubic Non-Homogeneous Schrodinger Equation [J].
El-Tawil, Magdy A. ;
Nasr, Sherif E. ;
El Zoheiry, H. .
WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I, 2013, :42-+
[17]   Optimal distributed control problem for cubic nonlinear Schrodinger equation [J].
Fernandez de la Vega, Constanza S. ;
Rial, Diego .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)
[18]   Growth of Sobolev norms in the cubic defocusing nonlinear Schrodinger equation [J].
Guardia, M. ;
Kaloshin, V. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (01) :71-149
[19]   Finite difference method with cubic spline for solving nonlinear Schrodinger equation [J].
Ismail, MS .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1996, 62 (1-2) :101-112
[20]   New optical solitons of cubic-quartic nonlinear Schrodinger equation [J].
Hosseini, K. ;
Samadani, F. ;
Kumar, D. ;
Faridi, M. .
OPTIK, 2018, 157 :1101-1105