Modeling and Electrical Performance Optimization of p-type SnO-based Cylindrical Thin-film Transistors

被引:1
作者
Akkili, Viswanath G. [1 ]
Srivastava, Viranjay M. [1 ]
机构
[1] Univ KwaZulu Natal, Howard Coll, Dept Elect Engn, ZA-4041 Durban, South Africa
来源
2021 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2021) | 2021年
关键词
MOBILITY;
D O I
10.1109/PIERS53385.2021.9694996
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Scaling down is a significant issue in semiconductor devices because of its physical limitations. In this research article, Thin-Film Transistors (TFT) with cylindrical geometry have been modeled and simulated for a high electrical p-type response using a 3D numerical simulator. The workfunction is varied from 4.0 eV to 5.5 eV to analyze the performance of the simulated TFTs. The maximum field-effect mobility of 30.2 cm(2)/V-s has been attained for the 4.0 eV device followed by a low sub-threshold swing and On-Off current ratio of 368 mV/dec and 7.32 x 10(8), respectively. These values are comparable with the countertype TFT devices. By realizing the high electrical performance p-type CTFT, efficient CMOSlike logic circuits can be implemented.
引用
收藏
页码:834 / 838
页数:5
相关论文
共 13 条
[1]   Record Mobility in Transparent p-Type Tin Monoxide Films and Devices by Phase Engineering [J].
Caraveo-Frescas, Jesus A. ;
Nayak, Pradipta K. ;
Al-Jawhari, Hala A. ;
Granato, Danilo B. ;
Schwingenschloegl, Udo ;
Alshareeft, Husam N. .
ACS NANO, 2013, 7 (06) :5160-5167
[2]   Hydrothermal Growth of Undoped and Zn-Doped SnO Nanocrystals: A Frequency Dependence of AC Conductivity and Dielectric Response Studies [J].
Gowd, A. Viswanath ;
Thangavel, R. .
SEMICONDUCTORS, 2020, 54 (01) :73-76
[3]  
Guo W., 2010, APPL PHYS LETT, V96, P12
[4]   Determination of some basic physical parameters of SnO based on SnO/Si pn heterojunctions [J].
Li, Xiuxia ;
Liang, Lingyan ;
Cao, Hongtao ;
Qin, Ruifeng ;
Zhang, Hongliang ;
Gao, Junhua ;
Zhuge, Fei .
APPLIED PHYSICS LETTERS, 2015, 106 (13)
[5]   Control of Ambipolar Transport in SnO Thin-Film Transistors by Back-Channel Surface Passivation for High Performance Complementary-like Inverters [J].
Luo, Hao ;
Liang, Lingyan ;
Cao, Hongtao ;
Dai, Mingzhi ;
Lu, Yicheng ;
Wang, Mei .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (31) :17023-17031
[6]   Towards the textile transistor: Assembly and characterization of an organic field effect transistor with a cylindrical geometry [J].
Maccioni, Maurizio ;
Orgiu, Emanuele ;
Cosseddu, Piero ;
Locci, Simone ;
Bonfiglio, Annalisa .
APPLIED PHYSICS LETTERS, 2006, 89 (14)
[7]   Analytical modeling of threshold voltage for Cylindrical Gate All Around (CGAA) MOSFET using center potential [J].
Pradhan, K. P. ;
Kumar, M. R. ;
Mohapatra, S. K. ;
Sahu, P. K. .
AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (04) :1171-1177
[8]   Trap states extraction of p-channel SnO thin-film transistors based on percolation and multiple trapping carrier conductions [J].
Qiang, Lei ;
Liu, Wuguang ;
Pei, Yanli ;
Wang, Gang ;
Yao, Ruohe .
SOLID-STATE ELECTRONICS, 2017, 129 :163-167
[9]   P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications [J].
Saji, Kachirayil J. ;
Subbaiah, Y. P. Venkata ;
Tian, Kun ;
Tiwari, Ashutosh .
THIN SOLID FILMS, 2016, 605 :193-201
[10]  
Seok J., 2012, THIN SOLID FILMS, V520, p1679{1693