Random costs in combinatorial optimization

被引:44
作者
Mertens, S [1 ]
机构
[1] Univ Magdeburg, Inst Theoret Phys, D-39106 Magdeburg, Germany
关键词
D O I
10.1103/PhysRevLett.84.1347
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The random cost problem is the problem of indentifying the minimum in a list of random numbers. By definition, this problem cannot be solved faster than by exhaustive search. It is shown that a classical NP-hard optimization problem, number partitioning, is essentially equivalent to the random cost problem. On the one hand this explains the bad performance of heuristic approaches to the number partitioning problem, but on the other hand it allows one to calculate the probability distributions of the optimum and suboptimum costs.
引用
收藏
页码:1347 / 1350
页数:4
相关论文
共 24 条
[1]  
[Anonymous], 1990, MIT ELECT ENG COMPUT
[2]  
[Anonymous], UNPUB
[3]   Universality classes for extreme-value statistics [J].
Bouchaud, JP ;
Mezard, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :7997-8015
[4]  
Cheeseman P C., 1991, INT JOINT C ARTIFICI, V91, P331
[5]   RANDOM-ENERGY MODEL - AN EXACTLY SOLVABLE MODEL OF DISORDERED-SYSTEMS [J].
DERRIDA, B .
PHYSICAL REVIEW B, 1981, 24 (05) :2613-2626
[6]   Probabilistic analysis of the number partitioning problem [J].
Ferreira, FF ;
Fontanari, JF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (15) :3417-3428
[7]   Statistical mechanics analysis of the continuous number partitioning problem [J].
Ferreira, FF ;
Fontanari, JF .
PHYSICA A, 1999, 269 (01) :54-60
[8]  
FU Y, 1989, LECT SCI COMPLEXITY, V1, P815
[9]  
Galambos J, 1987, ASYMPTOTIC THEORY EX
[10]  
Garey M. R., 1997, Computers and Intractability: A guide to the theory of NP-completeness