Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations
被引:7
作者:
Borisov, D., I
论文数: 0引用数: 0
h-index: 0
机构:
Russian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa, Russia
Bashkir State Univ, Ufa, Russia
Univ Hradec Kralove, Hradec Kralove, Czech RepublicRussian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa, Russia
Borisov, D., I
[1
,2
,3
]
Zezyulin, D. A.
论文数: 0引用数: 0
h-index: 0
机构:
ITMO Univ, St Petersburg 197101, RussiaRussian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa, Russia
Zezyulin, D. A.
[4
]
Znojil, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hradec Kralove, Hradec Kralove, Czech Republic
Czech Acad Sci, Nucl Phys Inst, Rez, Czech Republic
Durban Univ Technol, Inst Syst Sci, Durban, South AfricaRussian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa, Russia
Znojil, M.
[3
,5
,6
]
机构:
[1] Russian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa, Russia
[2] Bashkir State Univ, Ufa, Russia
[3] Univ Hradec Kralove, Hradec Kralove, Czech Republic
We consider the operator H = H'- partial derivative(2)/partial derivative x(d)(2) on omega x R subject to the Dirichlet or Robin condition, where a domain omega subset of Rd-1 is bounded or unbounded. The symbol H ' stands for a second-order self-adjoint differential operator on omega such that the spectrum of the operator H ' contains several discrete eigenvalues Lambda j, j=1, ... ,m. These eigenvalues are thresholds in the essential spectrum of the operator H. We study how these thresholds bifurcate once we add a small localized perturbation epsilon L(epsilon) to the operator H, where epsilon is a small positive parameter and L(epsilon) is an abstract, not necessarily symmetric operator. We show that these thresholds bifurcate into eigenvalues and resonances of the operator H in the vicinity of Lambda(j) for sufficiently small epsilon. We prove effective simple conditions determining the existence of these resonances and eigenvalues and find the leading terms of their asymptotic expansions. Our analysis applies to generic nonself-adjoint perturbations and, in particular, to perturbations characterized by the parity-time (PT) symmetry. Potential applications of our result embrace a broad class of physical systems governed by dispersive or diffractive effects. As a case example, we employ our findings to develop a scheme for a controllable generation of non-Hermitian optical states with normalizable power and real part of the complex-valued propagation constant lying in the continuum. The corresponding eigenfunctions can be interpreted as an optical generalization of bound states embedded in the continuum. For a particular example, the persistence of asymptotic expansions is confirmed with direct numerical evaluation of the perturbed spectrum.
机构:
Univ Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
Natl Inst Theoret Phys, Western Cape, South AfricaUniv Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
Barashenkov, I. V.
;
Zezyulin, D. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Ctr Fisica Teor & Computac, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal
Univ Lisbon, Dept Fis, Fac Ciencias, Edificio C8, P-1749016 Lisbon, PortugalUniv Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
Zezyulin, D. A.
;
Konotop, V. V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Ctr Fisica Teor & Computac, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal
Univ Lisbon, Dept Fis, Fac Ciencias, Edificio C8, P-1749016 Lisbon, PortugalUniv Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
机构:
Russian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa 450008, Russia
Bashkir State Pedag Univ, Ufa 450000, Russia
Univ Hradec Kralove, Hradec Kralove 50003, Czech RepublicRussian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa 450008, Russia
Borisov, D. I.
;
Zezyulin, D. A.
论文数: 0引用数: 0
h-index: 0
机构:
ITMO Univ, St Petersburg 197101, RussiaRussian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa 450008, Russia
机构:
Russian Acad Sci, Inst Math, Ufa Fed Res Ctr, Ufa 450008, Russia
Bashkir State Pedag Univ, Ufa 450000, Russia
Univ Hradec Kralove, Hradec Kralove 50003, Czech RepublicRussian Acad Sci, Inst Math, Ufa Fed Res Ctr, Ufa 450008, Russia
Borisov, D., I
;
Zezyulin, D. A.
论文数: 0引用数: 0
h-index: 0
机构:
ITMO Univ, St Petersburg 197101, RussiaRussian Acad Sci, Inst Math, Ufa Fed Res Ctr, Ufa 450008, Russia
机构:
Univ Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
Natl Inst Theoret Phys, Western Cape, South AfricaUniv Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
Barashenkov, I. V.
;
Zezyulin, D. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Ctr Fisica Teor & Computac, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal
Univ Lisbon, Dept Fis, Fac Ciencias, Edificio C8, P-1749016 Lisbon, PortugalUniv Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
Zezyulin, D. A.
;
Konotop, V. V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Ctr Fisica Teor & Computac, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal
Univ Lisbon, Dept Fis, Fac Ciencias, Edificio C8, P-1749016 Lisbon, PortugalUniv Cape Town, Dept Math, ZA-7701 Rondebosch, South Africa
机构:
Russian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa 450008, Russia
Bashkir State Pedag Univ, Ufa 450000, Russia
Univ Hradec Kralove, Hradec Kralove 50003, Czech RepublicRussian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa 450008, Russia
Borisov, D. I.
;
Zezyulin, D. A.
论文数: 0引用数: 0
h-index: 0
机构:
ITMO Univ, St Petersburg 197101, RussiaRussian Acad Sci, Ufa Fed Res Ctr, Inst Math, Ufa 450008, Russia
机构:
Russian Acad Sci, Inst Math, Ufa Fed Res Ctr, Ufa 450008, Russia
Bashkir State Pedag Univ, Ufa 450000, Russia
Univ Hradec Kralove, Hradec Kralove 50003, Czech RepublicRussian Acad Sci, Inst Math, Ufa Fed Res Ctr, Ufa 450008, Russia
Borisov, D., I
;
Zezyulin, D. A.
论文数: 0引用数: 0
h-index: 0
机构:
ITMO Univ, St Petersburg 197101, RussiaRussian Acad Sci, Inst Math, Ufa Fed Res Ctr, Ufa 450008, Russia