Multicluster and traveling chimera states in nonlocal phase-coupled oscillators

被引:108
作者
Xie, Jianbo [1 ]
Knobloch, Edgar [1 ]
Kao, Hsien-Ching [2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Wolfram Res Inc, Champaign, IL 61820 USA
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 02期
基金
美国国家科学基金会;
关键词
SYNCHRONIZATION; KURAMOTO; POPULATIONS; PATTERNS; RING;
D O I
10.1103/PhysRevE.90.022919
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Chimera states consisting of domains of coherently and incoherently oscillating identical oscillators with nonlocal coupling are studied. These states usually coexist with the fully synchronized state and have a small basin of attraction. We propose a nonlocal phase-coupled model in which chimera states develop from random initial conditions. Several classes of chimera states have been found: (a) stationary multicluster states with evenly distributed coherent clusters, (b) stationary multicluster states with unevenly distributed clusters, and (c) a single cluster state traveling with a constant speed across the system. Traveling coherent states are also identified. A self-consistent continuum description of these states is provided and their stability properties analyzed through a combination of linear stability analysis and numerical simulation.
引用
收藏
页数:17
相关论文
共 38 条
[21]   Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators [J].
Omel'chenko, O. E. .
NONLINEARITY, 2013, 26 (09) :2469-2498
[22]   Partially coherent twisted states in arrays of coupled phase oscillators [J].
Omel'chenko, Oleh E. ;
Wolfrum, Matthias ;
Laing, Carlo R. .
CHAOS, 2014, 24 (02)
[23]   Chimera states as chaotic spatiotemporal patterns [J].
Omel'chenko, Oleh E. ;
Wolfrum, Matthias ;
Maistrenko, Yuri L. .
PHYSICAL REVIEW E, 2010, 81 (06)
[24]   When Nonlocal Coupling between Oscillators Becomes Stronger: Patched Synchrony or Multichimera States [J].
Omelchenko, Iryna ;
Omel'chenko, Oleh E. ;
Hoevel, Philipp ;
Schoell, Eckehard .
PHYSICAL REVIEW LETTERS, 2013, 110 (22)
[25]   Low dimensional behavior of large systems of globally coupled oscillators [J].
Ott, Edward ;
Antonsen, Thomas M. .
CHAOS, 2008, 18 (03)
[26]   Partially Integrable Dynamics of Hierarchical Populations of Coupled Oscillators [J].
Pikovsky, Arkady ;
Rosenblum, Michael .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[27]   Long-wavelength modulation of turbulent shear flows [J].
Prigent, A ;
Grégoire, G ;
Chaté, H ;
Dauchot, O .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 174 (1-4) :100-113
[28]   Large-scale finite-wavelength modulation within turbulent shear flows -: art. no. 014501 [J].
Prigent, A ;
Grégoire, G ;
Chaté, H ;
Dauchot, O ;
van Saarloos, W .
PHYSICAL REVIEW LETTERS, 2002, 89 (01) :145011-145014
[29]   Instability of synchronized motion in nonlocally coupled neural oscillators [J].
Sakaguchi, H .
PHYSICAL REVIEW E, 2006, 73 (03)
[30]   Chimera States: The Existence Criteria Revisited [J].
Sethia, Gautam C. ;
Sen, Abhijit .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)