Dyck paths and restricted permutations

被引:10
作者
Mansour, Toufik [1 ]
Deng, Eva Y. P.
Du, Rosena R. X.
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[2] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[3] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[4] Nankai Univ, LPMC, Ctr Combinator, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
dyck path; restricted permutation; canonical reduced decomposition;
D O I
10.1016/j.dam.2006.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to characterize permutations with forbidden patterns by using canonical reduced decompositions, which leads to bijections between Dyck paths and S-n(321) and S-n(231), respectively. We also discuss permutations in S-n avoiding two patterns, one of length 3 and the other of length k. These permutations produce a kind of discrete continuity between the Motzkin and the Catalan numbers. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1593 / 1605
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 2003, ELECTRON J COMB
[2]  
Bandlow Jason, 2001, ELECTRON J COMB, V8
[3]  
Barcucci E, 1999, J DIFFER EQU APPL, V5, P435
[4]   From Motzkin to Catalan permutations [J].
Barcucci, E ;
Del Lungo, A ;
Pergola, E ;
Pinzani, R .
DISCRETE MATHEMATICS, 2000, 217 (1-3) :33-49
[5]   Forbidden subsequences and Chebyshev polynomials [J].
Chow, T ;
West, J .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :119-128
[6]   Permutations with restricted patterns and Dyck paths [J].
Krattenthaler, C .
ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) :510-530
[7]  
LASCOUX A, 2002, LECT NOTES SYMMETRIC
[8]   Restricted 132-avoiding permutations [J].
Mansour, T ;
Vainshtein, A .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (03) :258-269
[9]  
MANSOUR T, CO0302014
[10]  
Mansour T., 2001, ANN COMB, V5, P451