Characterization of the support for the hypergeometric Fourier transform of the W-invariant functions and distributions on Rd and Roe's theorem

被引:14
作者
Mejjaoli, Hatem [1 ]
Trimeche, Khalifa [2 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci, Dept Math, Tunis 1060, Tunisia
关键词
Cherednik operators; Heckman-Opdam Laplacian; hypergeometric Fourier transform; real Paley-Wiener theorems; Roe's theorem; EIGENFUNCTIONS;
D O I
10.1186/1029-242X-2014-99
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish real Paley-Wiener theorems for the hypergeometric Fourier transform on R-d. More precisely, we characterize the functions of the generalized Schwartz space S-2(R-d)(W) and of L-Ak(p) (R-d)(W), 1 <= p <= 2, whose hypergeometric Fourier transform has bounded, unbounded, convex, and nonconvex support. Finally we study the spectral problem on the generalized tempered distributions S'(2) (R-d)(W).
引用
收藏
页数:26
相关论文
共 19 条
[1]   On the range of the Chebli-Trimeche transform [J].
Andersen, NB .
MONATSHEFTE FUR MATHEMATIK, 2005, 144 (03) :193-201
[2]   Opdam's hypergeometric functions: product formula and convolution structure in dimension 1 [J].
Anker, Jean-Philippe ;
Ayadi, Fatma ;
Sifi, Mohamed .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (01) :11-44
[4]  
Barhoumi N., 2013, J MATH SCI, DOI [10.1016/j.ajmsc.2013.11.001, DOI 10.1016/J.AJMSC.2013.11.001]
[5]   A UNIFICATION OF KNIZHNIK-ZAMOLODCHIKOV AND DUNKL OPERATORS VIA AFFINE HECKE ALGEBRAS [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :411-431
[6]   AN ANALOGUE OF COWLING-PRICE'S THEOREM AND HARDY'S THEOREM FOR THE GENERALIZED FOURIER TRANSFORM ASSOCIATED WITH THE SPHERICAL MEAN OPERATOR [J].
Chettaoui, C. ;
Othmani, Y. ;
Trimeche, K. .
ANALYSIS AND APPLICATIONS, 2004, 2 (03) :177-192
[7]   Positivity of the Jacobi-Cherednik intertwining operator and its dual [J].
Gallardo, Leonard ;
Trimeche, Khalifa .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2010, 1 (02) :163-194
[8]   CHARACTERIZATION OF EIGENFUNCTIONS BY BOUNDEDNESS CONDITIONS [J].
HOWARD, R ;
REESE, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (02) :204-213
[9]  
Mejjaoli H., 2007, Fract. Cal. Appl. Anal, V10, P19
[10]   Cherednik-Sobolev spaces and applications [J].
Mejjaoli H. .
Afrika Matematika, 2015, 26 (1-2) :169-200