Thermal Conductivity of a Supported Multiwalled Carbon Nanotube

被引:15
作者
Konemann, Fabian [1 ]
Vollmann, Morten [1 ]
Wagner, Tino [2 ]
Ghazali, Norizzawati Mohd [5 ]
Yamaguchi, Tomohiro [3 ]
Stemmer, Andreas [2 ]
Ishibashi, Koji [3 ,4 ]
Gotsmann, Bernd [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Nanotechnol Grp, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[3] RIKEN, Adv Device Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[4] RIKEN, CEMS, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[5] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
基金
欧盟地平线“2020”;
关键词
INTERCONNECTS; TEMPERATURE; MICROSCOPY;
D O I
10.1021/acs.jpcc.9b00692
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have extracted temperature-dependent thermal conductivity values from scanning thermal microscopy measurements of a self-heated multiwalled carbon nanotube supported on a silicon substrate. A deliberately introduced segment of amorphous carbon served as an integrated nanoheater. Kelvin probe force microscopy was used to supplement the thermometry data with values for the nanotube's electrical resistivity. This way, both the spatially resolved temperature rise and the Joule heating power density were available for further analysis. A one-dimensional heat diffusion model was fitted to the data to extract values for the thermal conductivity along the nanotube axis and the thermal conductance between the nanotube and supporting substrate. We found thermal conductivity values that continuously increase from 200 to 400 W m(-1) K-1 in a temperature range of 100 to 400 K above room temperature. The values obtained are about one order of magnitude lower compared to values reported for the freely suspended case. We attribute this observation to the increased phonon scattering and quenching of acoustic phonon modes due to the substrate interaction.
引用
收藏
页码:12460 / 12465
页数:6
相关论文
共 26 条
[1]   Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes [J].
Aliev, Ali E. ;
Lima, Marcio H. ;
Silverman, Edward M. ;
Baughman, Ray H. .
NANOTECHNOLOGY, 2010, 21 (03)
[2]  
[Anonymous], 2017, CARBON NANOTUBES INT
[3]   Analysis of electromigration induced early failures in Cu interconnects for 45 nm node [J].
Arnaud, L. ;
Cacho, F. ;
Doyen, L. ;
Terrier, F. ;
Galpin, D. ;
Monget, C. .
MICROELECTRONIC ENGINEERING, 2010, 87 (03) :355-360
[4]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[5]   Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method -: art. no. 013108 [J].
Choi, TY ;
Poulikakos, D ;
Tharian, J ;
Sennhauser, U .
APPLIED PHYSICS LETTERS, 2005, 87 (01)
[6]   Modeling of single-wall carbon nanotube interconnects for different process, temperature, and voltage conditions and investigating timing delay [J].
Das, Debaprasad ;
Rahaman, Hafizur .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2012, 11 (04) :349-363
[7]   Phonons in carbon nanotubes [J].
Dresselhaus, MS ;
Eklund, PC .
ADVANCES IN PHYSICS, 2000, 49 (06) :705-814
[8]   Measuring the thermal conductivity of a single carbon nanotube [J].
Fujii, M ;
Zhang, X ;
Xie, HQ ;
Ago, H ;
Takahashi, K ;
Ikuta, T ;
Abe, H ;
Shimizu, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[9]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[10]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1