Process synthesis, design, and control: A mixed-integer optimal control framework

被引:0
作者
Schweiger, CA [1 ]
Floudas, CA [1 ]
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
来源
DYNAMICS & CONTROL OF PROCESS SYSTEMS 1998, VOLUMES 1 AND 2 | 1999年
关键词
mixed-integer nonlinear optimization; optimal control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A mixed-integer optimal control framework for analyzing the interaction of process synthesis, design, and control is presented in this paper. The approach integrates the economic design and dynamic controllability into a multiobjective Mixed-Integer Optimal Control Problem (MIOCP). The problem formulation includes dynamic models and incorporates both discrete and continuous decisions. An algorithm for the solution of the MIOCP is developed based on the principles of Generalized Benders Decomposition for mixed-integer nonlinear optimization. The algorithm is used to determine the trade-offs between the economic design and dynamic controllability of a reactor-separator-recycle system. Copyright (C) 1998 IFAC.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 50 条
  • [11] On the Mixed-Integer Linear-Quadratic Optimal Control With Switching Cost
    De Marchi, Alberto
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (04): : 990 - 995
  • [12] APPROXIMATION PROPERTIES AND TIGHT BOUNDS FOR CONSTRAINED MIXED-INTEGER OPTIMAL CONTROL
    Kirches, C.
    Lenders, F.
    Manns, P.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (03) : 1371 - 1402
  • [14] Relaxation methods for mixed-integer optimal control of partial differential equations
    Falk M. Hante
    Sebastian Sager
    [J]. Computational Optimization and Applications, 2013, 55 : 197 - 225
  • [15] POD-Based Mixed-Integer Optimal Control of the Heat Equation
    Freya, Bachmann
    Dennis, Beermann
    Lu Jianjie
    Stefan, Volkwein
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 48 - 75
  • [16] Relaxation methods for mixed-integer optimal control of partial differential equations
    Hante, Falk M.
    Sager, Sebastian
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (01) : 197 - 225
  • [17] Turnpike Properties in Discrete-Time Mixed-Integer Optimal Control
    Faulwasser, Timm
    Murray, Alexander
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (03): : 704 - 709
  • [18] Time-Domain Decomposition for Mixed-Integer Optimal Control Problems
    Falk M. Hante
    Richard Krug
    Martin Schmidt
    [J]. Applied Mathematics & Optimization, 2023, 87
  • [19] Mixed-Integer Formulations for Optimal Control of Piecewise-Affine Systems
    Marcucci, Tobia
    Tedrake, Russ
    [J]. PROCEEDINGS OF THE 2019 22ND ACM INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (HSCC '19), 2019, : 230 - 239
  • [20] Time-Domain Decomposition for Mixed-Integer Optimal Control Problems
    Hante, Falk M.
    Krug, Richard
    Schmidt, Martin
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (03)