Quantum-optical implementation of non-Hermitian potentials for asymmetric scattering

被引:4
作者
Ruschhaupt, A. [1 ]
Kiely, A. [2 ]
Simon, M. A. [3 ]
Muga, J. G. [3 ]
机构
[1] Univ Coll Cork, Dept Phys, Cork, Ireland
[2] Univ Coll Dublin, Sch Phys, Belfield 4, Ireland
[3] Univ Basque Country, Dept Quim Fis, Apdo 644, Bilbao 48080, Spain
基金
爱尔兰科学基金会;
关键词
UNIFIED THEORY; TIME; RECIPROCITY;
D O I
10.1103/PhysRevA.102.053705
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Non-Hermitian, one-dimensional potentials which are also nonlocal, allow for scattering asymmetries, namely, asymmetric transmission or reflection responses to the incidence of a particle from left or right. The symmetries of the potential imply selection rules for transmission and reflection. In particular, parity-time (PT) symmetry or the symmetry of any local potential do not allow for asymmetric transmission. We put forward a feasible quantum-optical implementation of non-Hermitian, nonlocal, non-PT potentials to implement different scattering asymmetries, including transmission asymmetries.
引用
收藏
页数:10
相关论文
共 54 条
[41]   Asymmetric scattering by non-Hermitian potentials [J].
Ruschhaupt, A. ;
Dowdall, T. ;
Simon, M. A. ;
Muga, J. G. .
EPL, 2017, 120 (02)
[42]   Physical realization of PT-symmetric potential scattering in a planar slab waveguide [J].
Ruschhaupt, A ;
Delgado, F ;
Muga, JG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (09) :L171-L176
[43]   Exact and approximate complex potentials for modelling time observables [J].
Ruschhaupt, A ;
Damborenea, JA ;
Navarro, B ;
Muga, JG ;
Hegerfeldt, GC .
EUROPHYSICS LETTERS, 2004, 67 (01) :1-7
[44]   Three-dimensional effects in atom diodes: Atom-optical devices for one-way motion [J].
Ruschhaupt, A. ;
Muga, J. G. .
PHYSICAL REVIEW A, 2007, 76 (01)
[45]  
Ruschhaupt A, 2009, LECT NOTES PHYS, V789, P65, DOI 10.1007/978-3-642-03174-8_4
[46]   S-matrix pole symmetries for non-Hermitian scattering Hamiltonians [J].
Simon, M. A. ;
Buendia, A. ;
Kiely, A. ;
Mostafazadeh, Ali ;
Muga, J. G. .
PHYSICAL REVIEW A, 2019, 99 (05)
[47]   Symmetries and Invariants for Non-Hermitian Hamiltonians [J].
Simon, Miguel Angel ;
Buendia, Alvaro ;
Muga, J. G. .
MATHEMATICS, 2018, 6 (07)
[48]   INVARIANT IMBEDDING SOLUTION OF DRIVEN (INHOMOGENEOUS) AND HOMOGENEOUS SCHRODINGER-EQUATIONS [J].
SINGER, S ;
FREED, KF ;
BAND, YB .
JOURNAL OF CHEMICAL PHYSICS, 1982, 77 (04) :1942-1950
[49]   Continuous and pulsed quantum zeno effect [J].
Streed, Erik W. ;
Mun, Jongchul ;
Boyd, Micah ;
Campbell, Gretchen K. ;
Medley, Patrick ;
Ketterle, Wolfgang ;
Pritchard, David E. .
PHYSICAL REVIEW LETTERS, 2006, 97 (26)
[50]   Optimal suppression of defect generation during a passage across a quantum critical point [J].
Wu, Ning ;
Nanduri, Arun ;
Rabitz, Herschel .
PHYSICAL REVIEW B, 2015, 91 (04)