Tuning layer-hybridized moire excitons by the quantum-confined Stark effect

被引:93
|
作者
Tang, Yanhao [1 ]
Gu, Jie [1 ]
Liu, Song [2 ]
Watanabe, Kenji [3 ]
Taniguchi, Takashi [3 ]
Hone, James [2 ]
Mak, Kin Fai [1 ,4 ,5 ]
Shan, Jie [1 ,4 ,5 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[3] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[4] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[5] Cornell Nanoscale Sci, Kavli Inst, Ithaca, NY 14853 USA
基金
日本科学技术振兴机构; 美国国家科学基金会;
关键词
ELECTRICAL CONTROL; INSULATOR; STATES; MOTT;
D O I
10.1038/s41565-020-00783-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Moire superlattices offer an unprecedented opportunity for tailoring interactions between quantum particles(1-11) and their coupling to electromagnetic fields(12-18). Strong superlattice potentials generate moire minibands of excitons(16-18)-bound pairs of electrons and holes that reside either in a single layer (intralayer excitons) or in two separate layers (interlayer excitons). Twist-angle-controlled interlayer electronic hybridization can also mix these two types of exciton to combine their strengths(13,19,20). Here we report the direct observation of layer-hybridized moire excitons in angle-aligned WSe2/WS2 and MoSe2/WS2 superlattices by optical reflectance spectroscopy. These excitons manifest a hallmark signature of strong coupling in WSe2/WS2, that is, energy-level anticrossing and oscillator strength redistribution under a vertical electric field. They also exhibit doping-dependent renormalization and hybridization that are sensitive to the electronic correlation effects. Our findings have important implications for emerging many-body states in two-dimensional semiconductors, such as exciton condensates(21) and Bose-Hubbard models(22), and optoelectronic applications of these materials. Optical reflectance spectroscopy provides a direct observation of layer-hybridized moire excitons in angle-aligned transition metal dichalcogenide heterostructures.
引用
收藏
页码:52 / 57
页数:6
相关论文
共 50 条
  • [31] Enhancement of the quantum-confined stark effect utilizing asymmetric quantum well structures
    Gug, RK
    Hagston, WE
    APPLIED PHYSICS LETTERS, 1999, 74 (02) : 254 - 256
  • [32] OPTICAL QUANTUM-CONFINED STARK-EFFECT IN GAAS QUANTUM-WELLS
    FROHLICH, D
    WILLE, R
    SCHLAPP, W
    WEIMANN, G
    PHYSICAL REVIEW LETTERS, 1987, 59 (15) : 1748 - 1751
  • [33] LARGE QUANTUM-CONFINED STARK-EFFECT IN QUATERNARY INGAALAS QUANTUM WELLS
    WAKITA, K
    KOTAKA, I
    NAKAO, M
    ASAI, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1989, 28 (09): : 1732 - 1733
  • [34] Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells
    Ryou, Jae-Hyun
    Yoder, P. Douglas
    Liu, Jianping
    Lochner, Zachary
    Kim, Hyunsoo
    Choi, Suk
    Kim, Hee Jin
    Dupuis, Russell D.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (04) : 1080 - 1091
  • [35] II-VI QUANTUM-CONFINED STARK-EFFECT MODULATORS
    KAWAKAMI, Y
    WANG, SY
    SIMPSON, J
    HAUKSSON, I
    ADAMS, SJA
    STEWART, H
    CAVENETT, BC
    PRIOR, KA
    PHYSICA B, 1993, 185 (1-4): : 496 - 499
  • [36] Band alignment and barrier height considerations for the quantum-confined Stark effect
    Yip, RYF
    Desjardins, P
    Isnard, L
    Ait-Ouali, A
    Bensaada, A
    Marchand, H
    Brebner, JL
    Currie, JF
    Masut, RA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1998, 16 (02): : 801 - 804
  • [37] Quantum-confined Stark effect and recombination dynamics of spatially indirect excitons in MBE-grown GaN-AlGaN quantum wells
    Lefebvre, P
    Gil, B
    Allègre, J
    Mathieu, H
    Grandjean, N
    Leroux, M
    Massies, J
    Bigenwald, P
    MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, 1999, 4
  • [38] QUANTUM-CONFINED STARK-EFFECT IN VERY SMALL SEMICONDUCTOR CRYSTALLITES
    HACHE, F
    RICARD, D
    FLYTZANIS, C
    APPLIED PHYSICS LETTERS, 1989, 55 (15) : 1504 - 1506
  • [39] Quantum-confined Stark effects in interdiffused semiconductor quantum dots
    Wang, Yang
    Negro, David
    Djie, Hery S.
    Ooi, Boon S.
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XV, 2007, 6468
  • [40] Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures
    Chaisakul, Papichaya
    Marris-Morini, Delphine
    Isella, Giovanni
    Chrastina, Daniel
    Le Roux, Xavier
    Gatti, Eleonora
    Edmond, Samson
    Osmond, Johann
    Cassan, Eric
    Vivien, Laurent
    OPTICS LETTERS, 2010, 35 (17) : 2913 - 2915