Tuning layer-hybridized moire excitons by the quantum-confined Stark effect

被引:93
|
作者
Tang, Yanhao [1 ]
Gu, Jie [1 ]
Liu, Song [2 ]
Watanabe, Kenji [3 ]
Taniguchi, Takashi [3 ]
Hone, James [2 ]
Mak, Kin Fai [1 ,4 ,5 ]
Shan, Jie [1 ,4 ,5 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[3] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[4] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[5] Cornell Nanoscale Sci, Kavli Inst, Ithaca, NY 14853 USA
基金
日本科学技术振兴机构; 美国国家科学基金会;
关键词
ELECTRICAL CONTROL; INSULATOR; STATES; MOTT;
D O I
10.1038/s41565-020-00783-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Moire superlattices offer an unprecedented opportunity for tailoring interactions between quantum particles(1-11) and their coupling to electromagnetic fields(12-18). Strong superlattice potentials generate moire minibands of excitons(16-18)-bound pairs of electrons and holes that reside either in a single layer (intralayer excitons) or in two separate layers (interlayer excitons). Twist-angle-controlled interlayer electronic hybridization can also mix these two types of exciton to combine their strengths(13,19,20). Here we report the direct observation of layer-hybridized moire excitons in angle-aligned WSe2/WS2 and MoSe2/WS2 superlattices by optical reflectance spectroscopy. These excitons manifest a hallmark signature of strong coupling in WSe2/WS2, that is, energy-level anticrossing and oscillator strength redistribution under a vertical electric field. They also exhibit doping-dependent renormalization and hybridization that are sensitive to the electronic correlation effects. Our findings have important implications for emerging many-body states in two-dimensional semiconductors, such as exciton condensates(21) and Bose-Hubbard models(22), and optoelectronic applications of these materials. Optical reflectance spectroscopy provides a direct observation of layer-hybridized moire excitons in angle-aligned transition metal dichalcogenide heterostructures.
引用
收藏
页码:52 / 57
页数:6
相关论文
共 50 条
  • [21] Suppression of the quantum-confined Stark effect in polar nitride heterostructures
    S. Schlichting
    G. M. O. Hönig
    J. Müßener
    P. Hille
    T. Grieb
    S. Westerkamp
    J. Teubert
    J. Schörmann
    M. R. Wagner
    A. Rosenauer
    M. Eickhoff
    A. Hoffmann
    G. Callsen
    Communications Physics, 1
  • [22] Suppression of the quantum-confined Stark effect in polar nitride heterostructuresis
    Schlichting, S.
    Hoenig, G. M. O.
    Muessener, J.
    Hille, P.
    Grieb, T.
    Westerkamp, S.
    Teubert, J.
    Schoermann, J.
    Wagner, M. R.
    Rosenauer, A.
    Eickhoff, M.
    Hoffmann, A.
    Callsen, G.
    COMMUNICATIONS PHYSICS, 2018, 1
  • [23] Quantum-confined Stark effect in band-inverted junctions
    Diaz-Fernandez, A.
    Dominguez-Adame, F.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 93 : 230 - 233
  • [24] Silicon germanium device exhibits quantum-confined Stark effect
    Jones-Bey, HA
    LASER FOCUS WORLD, 2005, 41 (12): : 29 - 29
  • [25] EFFECT OF ELECTRON PHONON COUPLING ON THE QUANTUM-CONFINED STARK-EFFECT
    XU, W
    XI, XL
    KAN, C
    SOLID STATE COMMUNICATIONS, 1988, 65 (01) : 83 - 85
  • [26] QUANTUM-CONFINED STARK EFFECTS IN SEMICONDUCTOR QUANTUM DOTS
    WEN, GW
    LIN, JY
    JIANG, HX
    CHEN, Z
    PHYSICAL REVIEW B, 1995, 52 (08): : 5913 - 5922
  • [27] Quantum-confined stark effects in semiconductor quantum disks
    Susa, N
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (10) : 1760 - 1766
  • [28] Quantum-Confined Stark Effect in Intersubband Transition in InAs/GaAs Quantum Dots
    Lu, Xuejun
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3373 - 3374
  • [29] Quantum-confined Stark effect in strained GaInN quantum wells on sapphire (0001)
    Takeuchi, T
    Sota, S
    Sakai, H
    Amanoa, H
    Akasaki, I
    Kaneko, Y
    Nakagawa, S
    Yamaoka, Y
    Yamada, N
    JOURNAL OF CRYSTAL GROWTH, 1998, 189 : 616 - 620
  • [30] Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires
    Renard, J.
    Songmuang, R.
    Tourbot, G.
    Bougerol, C.
    Daudin, B.
    Gayral, B.
    PHYSICAL REVIEW B, 2009, 80 (12):