Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs

被引:79
作者
Garcia-Cardona, Cristina [1 ]
Merkurjev, Ekaterina [2 ]
Bertozzi, Andrea L. [2 ]
Flenner, Arjuna [3 ]
Percus, Allon G. [1 ]
机构
[1] Claremont Grad Univ, Inst Math Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Naval Air Warfare Ctr, China Lake, CA USA
基金
美国国家科学基金会;
关键词
Segmentation; Ginzburg-Landau functional; diffuse interface; MBO scheme; graphs; convex splitting; image processing; high-dimensional data; IMAGE; REGULARIZATION; CLASSIFICATION; CONVERGENCE; FRAMEWORK; SCHEME;
D O I
10.1109/TPAMI.2014.2300478
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present two graph-based algorithms for multiclass segmentation of high-dimensional data on graphs. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation and graph cuts. A multiclass extension is introduced using the Gibbs simplex, with the functional's double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, image labeling, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art in multiclass graph-based segmentation algorithms for high-dimensional data.
引用
收藏
页码:1600 / 1613
页数:14
相关论文
共 68 条
  • [51] An MBO Scheme on Graphs for Classification and Image Processing
    Merkurjev, Ekaterina
    Kostic, Tijana
    Bertozzi, Andrea L.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (04): : 1903 - 1930
  • [52] MOTION OF MULTIPLE JUNCTIONS - A LEVEL SET APPROACH
    MERRIMAN, B
    BENCE, JK
    OSHER, SJ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (02) : 334 - 363
  • [53] Oellermann O. R., 1991, Graph Theory, Combinatorics, and Applications, V2, P871, DOI DOI 10.1016/J.CAMWA.2004.05.005
  • [54] FAST REACTION, SLOW DIFFUSION, AND CURVE SHORTENING
    RUBINSTEIN, J
    STERNBERG, P
    KELLER, JB
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (01) : 116 - 133
  • [55] Normalized cuts and image segmentation
    Shi, JB
    Malik, J
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (08) : 888 - 905
  • [56] Simons Ben, 1997, Phase Transitions and Collective Phenomena
  • [57] Subramanya A, 2011, J MACH LEARN RES, V12, P3311
  • [58] Szlam A, 2010, P 27 INT C MACH LEAR, P1039, DOI DOI 10.0RG/PAPERS/233.PDF
  • [59] Szlam AD, 2008, J MACH LEARN RES, V9, P1711
  • [60] van Gennip Y., 2013, MEAN CURVATURE THRES