Holding Open Micropores with Water: Hydrogen-Bonded Networks Supported by Hexaaquachromium(III) Cations

被引:19
作者
Taylor, Jared M. [1 ]
Dwyer, Patrick J. [1 ]
Reid, Joel W. [2 ]
Gelfand, Benjamin S. [1 ]
Lim, Dae-woon [3 ]
Donoshita, Masaki [3 ]
Veinberg, Stanislav L. [5 ,6 ]
Kitagawa, Hiroshi [3 ,4 ]
Vukotic, V. Nicholas [5 ,6 ]
Shimizu, George K. H. [1 ]
机构
[1] Univ Calgary, Dept Chem, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada
[3] Kyoto Univ, Grad Sch Sci, Div Chem, Sakyo Ku, Kyoto 6068502, Japan
[4] Kyushu Univ, INAMORI Frontier Res Ctr, Nishi Ku, 744 Motooka, Fukuoka 8193095, Japan
[5] PROTO Mfg Ltd, 2175 Solar Crescent, Oldcastle, ON N0R 1L0, Canada
[6] Univ Windsor, Dept Chem & Biochem, Windsor, ON N9B 3P4, Canada
来源
CHEM | 2018年 / 4卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
ALUMINUM SULFATE HEXAHYDRATE; POROUS COORDINATION POLYMERS; METAL-ORGANIC FRAMEWORKS; PERMANENT POROSITY; CARBON-DIOXIDE; CRYSTAL; SEPARATION; MOLECULES; TRANSFORMATION; ARCHITECTURES;
D O I
10.1016/j.chempr.2018.02.004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To form any porous solid requires payment of an energetic penalty to create voids through either strong bonds or many weak interactions working in concert. Here, we present a porous solid that is composed, after pore activation, of 27 wt % water and sustained by charge-assisted hydrogen bonds between hexaaquachromium(III) cations and organophosphonate anions. The network forms a pillared layered motif including guest solvents, as confirmed crystallographically. Although aquo ligands are an integral part of the hydrogen-bonding network that sustains the pores, activation under high vacuum is possible, and the network demonstrates reversible CO2 sorption. The stability of the network is attributed to the inertness of the octahedral d(3) Cr(III) center in combination with high degrees of complementarity and cooperativity of hydrogen bonds. The sub-nanometer pores are guest selective on the basis of size, shape, and chemical functionality.
引用
收藏
页码:868 / 878
页数:11
相关论文
共 51 条
  • [1] Crystal engineering: Strategies and architectures
    Aakeroy, CB
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1997, 53 : 569 - 586
  • [2] Versatile and Resilient Hydrogen-Bonded Host Frameworks
    Adachi, Takuji
    Ward, Michael D.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (12) : 2669 - 2679
  • [3] Gas storage in porous aromatic frameworks (PAFs)
    Ben, Teng
    Pei, Cuiying
    Zhang, Daliang
    Xu, Jun
    Deng, Feng
    Jing, Xiaofei
    Qiu, Shilun
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) : 3991 - 3999
  • [4] Canet D., 2005, Adv. Inorg. Chem, V57, P3
  • [5] LAYERED METAL PHOSPHATES AND PHOSPHONATES - FROM CRYSTALS TO MONOLAYERS
    CAO, G
    HONG, HG
    MALLOUK, TE
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 1992, 25 (09) : 420 - 427
  • [6] Cheetham AK, 1999, ANGEW CHEM INT EDIT, V38, P3268, DOI 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO
  • [7] 2-U
  • [8] Clearfield A, 2012, METAL PHOSPHONATE CHEMISTRY: FROM SYNTHESIS TO APPLICATIONS, P1, DOI 10.1039/9781849733571
  • [9] Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials
    Comotti, Angiolina
    Bracco, Silvia
    Distefano, Gaetano
    Sozzani, Piero
    [J]. CHEMICAL COMMUNICATIONS, 2009, (03) : 284 - 286
  • [10] Engineering void space in organic van der Waals crystals: calixarenes lead the way
    Dalgarno, Scott J.
    Thallapally, Praveen K.
    Barbour, Leonard J.
    Atwood, Jerry L.
    [J]. CHEMICAL SOCIETY REVIEWS, 2007, 36 (02) : 236 - 245