Self-tuning Motion Model for Visual Tracking

被引:0
作者
Tan, Hangkai [1 ]
Zhao, Qingjie [1 ]
Wang, Xiongpeng [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
来源
COGNITIVE SYSTEMS AND SIGNAL PROCESSING, ICCSIP 2016 | 2017年 / 710卷
关键词
Visual tracking; Self-tuning motion models; Logistic regression;
D O I
10.1007/978-981-10-5230-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In visual tracking, how to select a suitable motion model is an important problem to deal with, since the movements in real world are always irregular in most cases. We propose a self-tuning motion model for target tracking in this paper, where the current motion model is computed according to the relative distance of the target positions in the last two frames. Our method has achieved excellent performance when experimenting on the sequences where the targets move unstably, abruptly or even when partial occlusion exists, and the method is particularly robust to the unsuitable initial motion model.
引用
收藏
页码:74 / 81
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 2015, INT C COMP VIS
[2]  
[Anonymous], 2015, INT C COMP VIS
[3]  
Hare S, 2011, IEEE I CONF COMP VIS, P263, DOI 10.1109/ICCV.2011.6126251
[4]   Visual Tracking Decomposition [J].
Kwon, Junseok ;
Lee, Kyoung Mu .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :1269-1276
[5]  
Li M, 2010, PROC CVPR IEEE, P1315, DOI 10.1109/CVPR.2010.5539815
[6]  
Pan J., 2014, BRIT MACH VIS C
[7]  
Pérez P, 2002, LECT NOTES COMPUT SC, V2350, P661
[8]  
Qie ZA, 2014, CHIN CONTR CONF, P4685, DOI 10.1109/ChiCC.2014.6895729
[9]   Incremental learning for robust visual tracking [J].
Ross, David A. ;
Lim, Jongwoo ;
Lin, Ruei-Sung ;
Yang, Ming-Hsuan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) :125-141
[10]  
Wang N., 2015, INT C COMP VIS