Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties

被引:128
|
作者
Wen, Peng [1 ,4 ]
Voshage, Maximilian [2 ]
Jauer, Lucas [3 ]
Chen, Yanzhe [4 ]
Qin, Yu [4 ]
Poprawe, Reinhart [3 ]
Schleifenbaum, Johannes Henrich [2 ,3 ]
机构
[1] Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China
[2] Rhein Westfal TH Aachen, DAP, Steinbachstr 15, D-52074 Aachen, Germany
[3] Fraunhofer Inst Laser Technol ILT, Steinbachstr 15, D-52074 Aachen, Germany
[4] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
Additive manufacturing; Selective laser melting; Biodegradable implant; Zinc; Formation quality; Mechanical properties; PURE ZN; MAGNESIUM ALLOYS; IMPLANT; SURFACE; POWDER; MG; CORROSION; BEHAVIOR; DENSITY;
D O I
10.1016/j.matdes.2018.05.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zn based metals have exhibited promising applications for biodegradable implants. Only a handful of very recent reports were found on additive manufacturing of Zn metal by selective laser melting (SLM). This work provided a systematic study on densification, surface roughness and mechanical properties regarding SLM of Zn metal. Single track surface after laser melting was rugged and twisted with a large amount of attached particles due to severe Zn evaporation. For SLM produced solid parts, the relative density was more than 99.50%; the surface roughness Sa was 9.15-10.79 mu mfor as-melted status and 4.83 mu m after sandblasting, both comparable to optimal results obtained by SLM of common metals. The microstructure was made up of fine columnar grains. The average values of hardness, elastic modulus, yield strength, ultimate strength and elongation were 42 HV, 23GPa, 114 MPa, 134 MPa, and 10.1% respectively, better than those obtained by most manufacturing methods. The superior mechanical properties were attributed to high densification and fine grains resulted by optimal processing control of Zn evaporation and laser energy input. Cardiovascular stents were printed out to demonstrate additive manufacturing ability for complicated structures. All the results indicate the encouraging prospect of additive manufacturing of Zn based metals for biodegradable applications. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:36 / 45
页数:10
相关论文
共 50 条
  • [21] Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy
    Dolezal, Pavel
    Zapletal, Josef
    Fintova, Stanislava
    Trojanova, Zuzanka
    Greger, Miroslav
    Roupcova, Pavla
    Podrabsky, Tomas
    MATERIALS, 2016, 9 (11):
  • [22] Anisotropy in Microstructure and Mechanical Properties of Pure Zinc Fabricated by Laser Additive Manufacturing
    Zhao, Yanzhe
    Dong, Zhi
    Wang, Di
    Song, Changhui
    Yang, Yongqiang
    Han, Changjun
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (04):
  • [23] Metal Additive Manufacturing: A Review of Mechanical Properties
    Lewandowski, John J.
    Seifi, Mohsen
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 46, 2016, 46 : 151 - 186
  • [24] Keywords: Additive manufacturing Metallic stents Selective laser melting Material microstructure Mechanical properties Nanoindentation
    Langi, E.
    Zhao, L. G.
    Jamshidi, P.
    Attallah, M.
    Silberschmidt, V. V.
    Willcock, H.
    Vogt, F.
    MATERIALS TODAY COMMUNICATIONS, 2022, 31
  • [25] Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties
    Moussaoui, K.
    Rubio, W.
    Mousseigne, M.
    Sultan, T.
    Rezai, F.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 735 : 182 - 190
  • [26] Novel Biodegradable Zn Alloy with Exceptional Mechanical and In Vitro Corrosion Properties for Biomedical Applications
    Farabi, Ehsan
    Sharp, Julie
    Vahid, Alireza
    Wang, Jiangting
    Fabijanic, Daniel M.
    Barnett, Matthew R.
    Gallo, Santiago Corujeira
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 7 (12) : 5555 - 5572
  • [27] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J. P.
    LaLonde, A. D.
    Ma, J.
    MATERIALS & DESIGN, 2020, 193
  • [28] Machine learning prediction of mechanical properties in metal additive manufacturing
    Akbari, Parand
    Zamani, Masoud
    Mostafaei, Amir
    ADDITIVE MANUFACTURING, 2024, 91
  • [29] Investigation of the Microstructure and Mechanical Properties of an Ultrahigh Strength Martensitic Steel Fabricated Using Laser Metal Deposition Additive Manufacturing
    Wang, Min
    Zhang, Qican
    Li, Wengang
    Zhang, Zhen
    Chui, Pengfei
    Yu, Zhiting
    Zhang, Kun
    METALS, 2022, 12 (10)
  • [30] A Review of Additive Manufacturing of Biodegradable Fe and Zn Alloys for Medical Implants Using Laser Powder Bed Fusion (LPBF)
    Limon, Irene
    Bedmar, Javier
    Fernandez-Hernan, Juan Pablo
    Multigner, Marta
    Torres, Belen
    Rams, Joaquin
    Cifuentes, Sandra C.
    MATERIALS, 2024, 17 (24)