Axial ligand effect on the stability of Fe-N-C electrocatalysts for acidic oxygen reduction reaction

被引:91
作者
Wang, Feiteng [1 ]
Zhou, Yipeng [1 ]
Lin, Sen [2 ]
Yang, Lijun [1 ]
Hu, Zheng [1 ]
Xie, Daiqian [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210023, Peoples R China
[2] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxygen reduction reaction; Stability; Fe-N-C electrocatalysts; First-principle modeling; Potential dependent kinetic study;
D O I
10.1016/j.nanoen.2020.105128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iron and nitrogen co-doped carbons (Fe-N-C) have comparable activity to Pt-based catalysts for oxygen reduction reaction (ORR), but with much poorer durability in acidic electrolytes. Recently, regulating the coordination environment of Fe center (in-plane or axially) to boost the ORR activity of Fe-N-C has attracted many interests, and the axial OH ligand is even regarded as a necessary part of a highly-active structure. However, the influence of these regulations on the stability is still not clear. Herein, we performed kinetic and thermodynamic calculations based on density functional theory with explicit consideration of electrode potential to study the OH axial ligand effect on the stability of Fe-N-C electrocatalysts. We found that although the OH ligand can enhance the ORR onset potential to some extent, it substantially increases the H2O2 selectivity, pushing ORR diverted to the 2e+ 2e-pathway. In the latter 2e-process (H2O2 reduction), harmful hydroxyl radicals could be produced upon H2O2 dissociation. Therefore, from the perspective of catalysts' stability, OH ligand coordination on the metal center is not a good way to develop stable ORR catalysts.
引用
收藏
页数:6
相关论文
共 47 条
[1]   Impact of loading in RRDE experiments on Fe-N-C catalysts: Two- or four-electron oxygen reduction? [J].
Bonakdarpour, Arman ;
Lefevre, Michel ;
Yang, Ruizhi ;
Jaouen, Frederic ;
Dahn, Tara ;
Dodelet, Jean-Pol ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) :B105-B108
[2]   Insight into the Rapid Degradation Behavior of Nonprecious Metal Fe-N-C Electrocatalyst-Based Proton Exchange Membrane Fuel Cells [J].
Chen, Junren ;
Yan, Xiaohui ;
Fu, Cehuang ;
Feng, Yan ;
Lin, Chen ;
Li, Xiaolin ;
Shen, Shuiyun ;
Ke, Changchun ;
Zhang, Junliang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (41) :37779-37786
[3]   Atomically Dispersed Metal Catalysts for Oxygen Reduction [J].
Chen, Mengjie ;
He, Yanghua ;
Spendelow, Jacob S. ;
Wu, Gang .
ACS ENERGY LETTERS, 2019, 4 (07) :1619-1633
[4]   Alignment of electronic energy levels at electrochemical interfaces [J].
Cheng, Jun ;
Sprik, Michiel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (32) :11245-11267
[5]   Single Cobalt Atom and N Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction Reaction [J].
Cheng, Qingqing ;
Yang, Lijun ;
Zou, Liangliang ;
Zou, Zhiqing ;
Chen, Chi ;
Hu, Zheng ;
Yang, Hui .
ACS CATALYSIS, 2017, 7 (10) :6864-6871
[6]   Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium [J].
Choi, Chang Hyuck ;
Baldizzone, Claudio ;
Polymeros, George ;
Pizzutilo, Enrico ;
Kasian, Olga ;
Schuppert, Anna K. ;
Sahraie, Nastaran Ranjbar ;
Sougrati, Moulay-Tahar ;
Mayrhofer, Karl J. J. ;
Jaouen, Frederic .
ACS CATALYSIS, 2016, 6 (05) :3136-3146
[7]   Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy [J].
Choi, Chang Hyuck ;
Baldizzone, Claudio ;
Grote, Jan-Philipp ;
Schuppert, Anna K. ;
Jaouen, Frederic ;
Mayrhofer, Karl J. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (43) :12753-12757
[8]   Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst [J].
Chung, Hoon T. ;
Cullen, David A. ;
Higgins, Drew ;
Sneed, Brian T. ;
Holby, Edward F. ;
More, Karren L. ;
Zelenay, Piotr .
SCIENCE, 2017, 357 (6350) :479-483
[9]   Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst [J].
Gao, Jiajian ;
Yang, Hong Bin ;
Huang, Xiang ;
Hung, Sung-Fu ;
Cai, Weizheng ;
Jia, Chunmiao ;
Miao, Shu ;
Chen, Hao Ming ;
Yang, Xiaofeng ;
Huang, Yanqiang ;
Zhang, Tao ;
Liu, Bin .
CHEM, 2020, 6 (03) :658-674
[10]   Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems [J].
Gewirth, Andrew A. ;
Varnell, Jason A. ;
DiAscro, Angela M. .
CHEMICAL REVIEWS, 2018, 118 (05) :2313-2339