The Cauchy problem for the Gross-Pitaevskii equation

被引:75
作者
Gerard, P. [1 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2006年 / 23卷 / 05期
关键词
Nonlinear Schrodinger equation; dispersive equations;
D O I
10.1016/j.anihpc.2005.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global wellposedness of the two-dimensional and three-dimensional Gross-Pitaevskii equations in the natural energy space. (c) 2006 Elsevier SAS. All rights reserved.
引用
收藏
页码:765 / 779
页数:15
相关论文
共 21 条
  • [1] Bethuel F, 2004, J EUR MATH SOC, V6, P17
  • [2] Bethuel F, 1999, ANN I H POINCARE-PHY, V70, P147
  • [3] Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
  • [4] Cazenave T., 2003, Semilinear Schrodinger equations, V10
  • [5] TRANSITION TO DISSIPATION IN A MODEL OF SUPERFLOW
    FRISCH, T
    POMEAU, Y
    RICA, S
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (11) : 1644 - 1647
  • [6] Gallo C, 2004, ADV DIFFERENTIAL EQU, V9, P509
  • [7] CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE
    GINIBRE, J
    VELO, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) : 1 - 32
  • [8] THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR SCHRODINGER-EQUATION REVISITED
    GINIBRE, J
    VELO, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (04): : 309 - 327
  • [9] GOUBET O, 2005, 2 REMARKS SOLUTIONS
  • [10] Decay for travelling waves in the Gross-Pitaevskii equation
    Gravejat, P
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (05): : 591 - 637