Parseval frame scaling sets and MSF Parseval frame wavelets

被引:2
|
作者
Liu, Zhanwei [1 ,2 ]
Hu, Guoen [1 ]
Lu, Zhibo [1 ]
机构
[1] Univ Informat Engn, Coll Informat Engn, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ, Informat Engn Coll, Zhengzhou 450002, Peoples R China
基金
美国国家科学基金会;
关键词
GROUPS HIERARCHY; TRANSFORM; HILBERT; SPACE; TIME;
D O I
10.1016/j.chaos.2008.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Parseval frame (PF) scaling sets and the MSF Parseval frame wavelets (PFWs) in L-2 (R-d) with dilations induced by expanding matrices A with integer coefficients of arbitrary determinant such that |detA| = 2. We firstly characterize the PF scaling sets, and then provide a method of construction of PF scaling sets. We also prove that all PF scaling sets arise in that way. Finally, by studying the relation between the MSF PFWs and the PF scaling sets, we derive that each PF scaling set S gives rise to a MSF PFW psi, and furthermore each MSF PFW whose dimension function is essentially bounded by I arises from a PF scaling set and the corresponding PF MRA. Using our results, one can easily construct various PF scaling sets and MSF PFWs. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1966 / 1974
页数:9
相关论文
共 50 条
  • [1] The Characterization of Parseval Frame Wavelets
    Xin Xiang ZHANGGuo Chang WU College of InformationHenan University of Finance and EconomicsHenan PRChina
    数学研究与评论, 2011, 31 (02) : 242 - 250
  • [2] The Characterization of Parseval Frame Wavelets
    Xin Xiang ZHANG
    Journal of Mathematical Research with Applications, 2011, (02) : 242 - 250
  • [3] On Parseval super-frame wavelets
    LI Zhongyan SHI XianliangCollege of Mathematics and Computer ScienceKey Laboratory of High Performance Computing and Stochastic Information ProcessingHPCSIPMinistry of Education of China Hunan Normal UniversityChangsha ChinaDepartment of Mathematics and PhysicsNorth China Electric Power UniversityBeijing China
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2012, 27 (02) : 192 - 204
  • [4] On Parseval super-frame wavelets
    LI Zhong-yan1
    Applied Mathematics:A Journal of Chinese Universities, 2012, (02) : 192 - 204
  • [5] On Parseval super-frame wavelets
    Li Zhong-yan
    Shi Xian-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (02) : 192 - 204
  • [6] On Parseval super-frame wavelets
    Zhong-yan Li
    Xian-liang Shi
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 192 - 204
  • [7] Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    Jiang, Bin
    CHAOS SOLITONS & FRACTALS, 2008, 38 (05) : 1449 - 1456
  • [8] Further results on the connectivity of Parseval frame wavelets
    Garrigos, G.
    Hernandez, E.
    Sikic, H.
    Soria, F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) : 3211 - 3221
  • [9] Parseval frame wavelets associated with A-FMRA
    Wu, Guochang
    Cheng, Zhengxing
    Li, Dengfeng
    Zhang, Fangjuan
    CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 1233 - 1243
  • [10] Projections and dyadic Parseval frame MRA wavelets
    Luthy, Peter M.
    Weiss, Guido L.
    Wilson, Edward N.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (03) : 511 - 533