Deep learning for electromagnetically induced transparency (EIT) metasurface optimization design

被引:12
作者
Zhu, Lei [1 ]
Zhang, Cong [1 ]
Guo, Jing [2 ]
Dong, Liang [1 ]
Gong, Jinyue [1 ]
机构
[1] Qiqihar Univ, Commun & Elect Engn Inst, Qiqihar 161006, Peoples R China
[2] North Univ China, Sci & Technol Elect Test & Measurement Lab, Minist Educ, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
metasurface; electromagnetically induced transparency effect (EIT); deep learning; inverse design; DIELECTRIC METASURFACE; INVERSE DESIGN; PREDICTION; MODULATION;
D O I
10.1088/1361-6463/ac670f
中图分类号
O59 [应用物理学];
学科分类号
摘要
In order to accelerate the design process of electromagnetically induced transparency (EIT) metasurface, a deep learning-based EIT metasurface design method is proposed, where the spectral profile of EIT metasurface can be predicted by the forward prediction process, and the EIT metasurface geometry parameters based on the target spectral profile can be obtained by the inverse design process. In the inverse design process, a cascaded convolutional neural network (CNN) consisting of one-dimensional convolutional layer, a batch normalization layer, a pooling layer and an exponential linear unit (ELU) activation function is employed. Each CNN is designed to achieve feature extraction for spectra. The inverse network achieves low mean square errors (MSE), with MSE of 0.011 on the validation sets. After training, the model can more accurately predict the parameters with error of 0.3 mu m. This method is more efficient and saves computing resources, allowing designers to focus on the target spectra. More importantly, it can be extended to the design of arbitrary metasurface.
引用
收藏
页数:9
相关论文
共 39 条
  • [1] Deep learning modeling approach for metasurfaces with high degrees of freedom
    An, Sensong
    Zheng, Bowen
    Shalaginov, Mikhail Y.
    Tang, Hong
    Li, Hang
    Zhou, Li
    Ding, Jun
    Agarwal, Anuradha Murthy
    Rivero-Baleine, Clara
    Kang, Myungkoo
    Richardson, Kathleen A.
    Gu, Tian
    Hu, Juejun
    Fowler, Clayton
    Zhang, Hualiang
    [J]. OPTICS EXPRESS, 2020, 28 (21): : 31932 - 31942
  • [2] A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design
    An, Sensong
    Fowler, Clayton
    Zheng, Bowen
    Shalaginov, Mikhail Y.
    Tang, Hong
    Li, Hang
    Zhou, Li
    Ding, Jun
    Agarwal, Anuradha Murthy
    Rivero-Baleine, Clara
    Richardson, Kathleen A.
    Gu, Tian
    Hu, Juejun
    Zhang, Hualiang
    [J]. ACS PHOTONICS, 2019, 6 (12) : 3196 - 3207
  • [3] Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
  • [4] Multitask deep-learning-based design of chiral plasmonic metamaterials
    Ashalley, Eric
    Acheampong, Kingsley
    Besteiro, Lucas, V
    Yu, Peng
    Neogi, Arup
    Govorov, Alexander O.
    Wang, Zhiming
    [J]. PHOTONICS RESEARCH, 2020, 8 (07) : 1213 - 1225
  • [5] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [6] Clevert DA, 2016, ICLR
  • [7] Parameters Sharing in Residual Neural Networks
    Dai, Dawei
    Yu, Liping
    Wei, Hui
    [J]. NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1393 - 1410
  • [8] Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials
    Dong, Zheng-Gao
    Liu, Hui
    Cao, Jing-Xiao
    Li, Tao
    Wang, Shu-Ming
    Zhu, Shi-Ning
    Zhang, X.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (11)
  • [9] Electromagnetically induced transparency: Optics in coherent media
    Fleischhauer, M
    Imamoglu, A
    Marangos, JP
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (02) : 633 - 673
  • [10] Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
    Gulshan, Varun
    Peng, Lily
    Coram, Marc
    Stumpe, Martin C.
    Wu, Derek
    Narayanaswamy, Arunachalam
    Venugopalan, Subhashini
    Widner, Kasumi
    Madams, Tom
    Cuadros, Jorge
    Kim, Ramasamy
    Raman, Rajiv
    Nelson, Philip C.
    Mega, Jessica L.
    Webster, R.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22): : 2402 - 2410