On Kharitonov-type theorems for real polynomials: When is degree drop admissible?

被引:5
作者
Foo, Yung Kuan [1 ]
机构
[1] LW Elect & Mech Engn Private Ltd, LW Techno Ctr, Singapore 608608, Singapore
关键词
root-clustering property; interval polynomial; Kharitonov's theorem; stability; root-locus;
D O I
10.1016/j.sysconle.2006.03.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A root-locus approach is adopted to show that extension of Kharitonov-type theorem for real interval polynomial with degree drop is not only applicable to the open left-half plane, but also other regions such as the left-shifted open left-half plane and the left sector. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:777 / 779
页数:3
相关论文
共 14 条
[1]  
Barmish B.R., 1994, New Tools for Robustness of Linear Systems
[2]   APERIODIC PROPERTY OF INTERVAL POLYNOMIALS [J].
FOO, YK ;
SOH, YC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (09) :1084-1086
[3]   ROOT CLUSTERING OF INTERVAL POLYNOMIALS IN THE LEFT-SECTOR [J].
FOO, YK ;
SOH, YC .
SYSTEMS & CONTROL LETTERS, 1989, 13 (03) :239-245
[4]   CHARACTERIZATION OF ZERO LOCATIONS OF POLYTOPES OF REAL POLYNOMIALS [J].
FOO, YK ;
SOH, YC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (08) :1227-1230
[5]   Kharitonov's theorem extension to interval polynomials which can drop in degree: A nyquist approach [J].
Hernandez, R ;
Dormido, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) :1009-1012
[6]   On Kharitonov's theorem without invariant degree assumption [J].
Kale, AA ;
Tits, AL .
AUTOMATICA, 2000, 36 (07) :1075-1076
[7]  
Kharitonov V., 1978, Izvestiya Akademii Nauk Kazakhskoi SSR, Seriya FizikoMatematicheskikh, V1, P53
[8]  
Kharitonov VL, 1978, DIFFERENTIALNYE URAV, V14, P1483
[9]  
MORI T, 1992, RECENT ADV MATH THEO, V1, P409
[10]  
PETERSEN IR, 1987, P 1987 2EEE C DEC CO, V3, P2070