Existence, uniqueness and exponential stability for stochastic age-dependent population

被引:64
作者
Qi-Min, Z [1 ]
Wen-An, L
Zan-Kan, N
机构
[1] Xian Jiaotong Univ, Fac Sci, Sch Sci, Xian 710049, Peoples R China
[2] Ningxia Univ, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
existence; uniqueness; stability; stochastic population system;
D O I
10.1016/S0096-3003(03)00702-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a class of stochastic age-dependent population dynamic system. Existence and uniqueness of strong solution are proved for stochastic age-dependent population dynamic system in Hilbert space, using Klmogorou's inequality and Barkholder-Davis-Gundy's lemma, some criteria are obtained for the exponential stability of stochastic age-dependent population dynamic system. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:183 / 201
页数:19
相关论文
共 14 条
[1]   The effects of vaccination in an age-dependent model for varicella and herpes zoster [J].
Allen, LJS ;
Thrasher, DB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (06) :779-789
[2]  
Anita S., 2000, ANAL CONTROL AGE DEP
[3]   Population extinction and quasi-stationary behavior in stochastic density-dependent structured models [J].
Block, GL ;
Allen, LJS .
BULLETIN OF MATHEMATICAL BIOLOGY, 2000, 62 (02) :199-228
[4]  
Caraballo T., 1991, COLLECT MATH, V42, P51
[5]  
Cushing J.M., 1998, An Introduction to Structured Population Dynamics
[6]   THE DYNAMICS OF HIERARCHICAL AGE-STRUCTURED POPULATIONS [J].
CUSHING, JM .
JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 32 (07) :705-729
[7]   Hierarchical models of intra-specific competition: Scramble versus contest [J].
Henson, SM ;
Cushing, JM .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 34 (07) :755-772
[8]   PRINCIPAL EIGENVALUES, TOPOLOGICAL PRESSURE, AND STOCHASTIC STABILITY OF EQUILIBRIUM STATES [J].
KIFER, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 70 (01) :1-47
[9]  
Mao X., 1994, EXPONENTIAL STABILIT
[10]  
Metiver M., 1980, STOCHASTIC INTEGRATI