Improvement of soil property mapping in the Great Clay Belt of northern Ontario using multi-source remotely sensed data

被引:6
作者
Pittman, R. [1 ]
Hu, B. [1 ]
Webster, K. [2 ]
机构
[1] York Univ, Dept Earth & Space Sci & Engn, 4700 Keele St, Keele, ON M3J 1P3, Canada
[2] Nat Resources Canada, Canadian Forest Serv, Great Lakes Forestry Ctr, 1219 Queen St East, Sault Ste Marie, ON P6A 2E5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Digital soil mapping; Soil classification; LiDAR; Canopy height model; Gap fraction; Aeromagnetic survey; ORGANIC-CARBON STOCKS; REGRESSION-TREE; SPATIAL PREDICTION; PHYSICAL QUALITY; RESOLUTION; TEXTURE; MOISTURE; CANADA; FORESTS; ACID;
D O I
10.1016/j.geoderma.2020.114761
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
This study aimed to improve the accuracy in modelling the properties of forest soil by employing a variety of remotely sensed data. In addition to the commonly used multispectral satellite imagery, airborne LiDAR (light detection and ranging) data were exploited to derive detailed vegetation properties and topographic variables. Random forest (RF) and support vector machine (SVM) approaches were applied to classify soil types in terms of texture, calcareous substrate reaction to hydrochloric acid, and ELC (Ecological Land Classification) moisture regime. The developed methods were tested on data acquired over a boreal region (49 degrees - 50 degrees N, 81 degrees - 84 degrees W) with a combined area of 4,085 km(2) in the Great Clay Belt (GCB) region, Ontario, Canada. Compared with the fieldcollected data, the overall accuracies and kappa coefficients of the retrieved soil properties were greater than 0.7 and 0.5, respectively. The accuracies attained between the RF and SVM approaches were similar, but in general the highest accuracies were achieved by the RF method. The models developed for the whole GCB regions generated accuracies comparable to those for the three sub-regions. The lowest modelling uncertainties occurred in areas dominated by peatland, whereas the highest modelling uncertainties existed in the regions with dry moisture regime or clayey soil at the surface. The results also showed that environmental covariates corresponding to vegetation were most important in the prediction of soil properties. Specifically, canopy height model (CHM) and gap fraction derived from LiDAR data, were among the most important variables. The inclusion of LiDAR-derived covariates demonstrated potential, applied in addition with topographic and climatic covariates and optical imagery. CHM pertains to the vertical dimension, and gap fraction relates to the density of the canopy layer, respectively; both covariates that offer supplemental detail that is not necessarily ascertained for the canopy by optical imagery.
引用
收藏
页数:15
相关论文
共 72 条
[1]   High-Resolution 3-D Mapping of Soil Texture in Denmark [J].
Adhikari, Kabindra ;
Kheir, Rania Bou ;
Greve, Mette B. ;
Bocher, Peder K. ;
Malone, Brendan P. ;
Minasny, Budiman ;
McBratney, Alex B. ;
Greve, Mogens H. .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2013, 77 (03) :860-876
[2]   GIS-based modeling of forest soil moisture regime classes: Using Rinker Lake in northwestern Ontario, Canada as a case study [J].
Akumu, C. E. ;
Baldwin, K. ;
Dennis, S. .
GEODERMA, 2019, 351 :25-35
[3]   GIS-fuzzy logic based approach in modeling soil texture: Using parts of the Clay Belt and Hornepayne region in Ontario Canada as a case study [J].
Akumu, C. E. ;
Johnson, J. A. ;
Etheridge, D. ;
Uhlig, P. ;
Woods, M. ;
Pitt, D. G. ;
McMurray, S. .
GEODERMA, 2015, 239 :13-24
[4]   Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM [J].
Anderson, Eric S. ;
Thompson, James A. ;
Crouse, David A. ;
Austin, Rob E. .
GEODERMA, 2006, 132 (3-4) :406-415
[5]   Mapping the soils of an Argentine Pampas region using structural equation modelling [J].
Angelini, Marcos E. ;
Heuvelink, Gerard B. M. ;
Kempen, Bas ;
Morras, Hector J. M. .
GEODERMA, 2016, 281 :102-118
[6]   Tracking forest attributes across Canada between 2001 and 2011 using a k nearest neighbors mapping approach applied to MODIS imagery [J].
Beaudoin, A. ;
Bernier, P. Y. ;
Villemaire, P. ;
Guindon, L. ;
Guo, X. Jing .
CANADIAN JOURNAL OF FOREST RESEARCH, 2018, 48 (01) :85-93
[7]   Mapping attributes of Canada's forests at moderate resolution through kNN and MODIS imagery [J].
Beaudoin, A. ;
Bernier, P. Y. ;
Guindon, L. ;
Villemaire, P. ;
Guo, X. J. ;
Stinson, G. ;
Bergeron, T. ;
Magnussen, S. ;
Hall, R. J. .
CANADIAN JOURNAL OF FOREST RESEARCH, 2014, 44 (05) :521-532
[8]   Multiscale contextual spatial modelling with the Gaussian scale space [J].
Behrens, T. ;
Schmidt, K. ;
MacMillan, R. A. ;
Rossel, R. A. Viscarra .
GEODERMA, 2018, 310 :128-137
[9]   Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone [J].
Boulanger, Yan ;
Taylor, Anthony R. ;
Price, David T. ;
Cyr, Dominic ;
McGarrigle, Elizabeth ;
Rammer, Werner ;
Sainte-Marie, Guillaume ;
Beaudoin, Andre ;
Guindon, Luc ;
Mansuy, Nicolas .
LANDSCAPE ECOLOGY, 2017, 32 (07) :1415-1431
[10]   Machine learning for predicting soil classes in three semi-arid landscapes [J].
Brungard, Colby W. ;
Boettinger, Janis L. ;
Duniway, Michael C. ;
Wills, Skye A. ;
Edwards, Thomas C., Jr. .
GEODERMA, 2015, 239 :68-83