Coupling Strength Allocation for Synchronization in Complex Networks Using Spectral Graph Theory

被引:35
作者
Liu, Hui [1 ]
Cao, Ming [1 ]
Wu, Chai Wah [2 ]
机构
[1] Univ Groningen, ITM, Fac Math & Nat Sci, NL-9747 AG Groningen, Netherlands
[2] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Complex networks; coupling strength allocation; spectral graph theory; synchronization; ALGEBRAIC CONNECTIVITY;
D O I
10.1109/TCSI.2013.2285696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using spectral graph theory and especially its graph comparison techniques, we propose new methodologies to allocate coupling strengths to guarantee global complete synchronization in complex networks. The key step is that all the eigenvalues of the Laplacian matrix associated with a given network can be estimated by utilizing flexibly topological features of the network. The proposed methodologies enable the construction of different coupling-strength combinations in response to different knowledge about subnetworks. Adaptive allocation strategies can be carried out as well using only local network topological information. Besides formal analysis, we use simulation examples to demonstrate how to apply the methodologies to typical complex networks.
引用
收藏
页码:1520 / 1530
页数:11
相关论文
共 32 条
[1]  
[Anonymous], 1965, The algebraic eigenvalue problem
[2]   Synchronization in asymmetrically coupled networks with node balance [J].
Belykh, I ;
Belykh, V ;
Hasler, M .
CHAOS, 2006, 16 (01)
[3]   Generalized connection graph method for synchronization in asymmetrical networks [J].
Belykh, Igor ;
Belykh, Vladimir ;
Hasler, Martin .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 224 (1-2) :42-51
[4]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[5]   Old and new results on algebraic connectivity of graphs [J].
de Abreu, Nair Maria Maia .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) :53-73
[6]  
Godsil C., 2001, Algebraic graph theory
[7]   Graph embeddings and Laplacian eigenvalues [J].
Guattery, S ;
Miller, GL .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) :703-723
[8]   The path resistance method for bounding the smallest nontrivial eigenvalue of a Laplacian [J].
Guattery, S ;
Leighton, T ;
Miller, GL .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (05) :441-460
[9]  
Horn R.A., 2012, Matrix Analysis
[10]  
Kahale N, 1997, RANDOM STRUCT ALGOR, V11, P299, DOI 10.1002/(SICI)1098-2418(199712)11:4<299::AID-RSA2>3.0.CO