Quasi-exactly solvable cases of an N-dimensional symmetric decatic anharmonic oscillator

被引:15
|
作者
Pan, F [1 ]
Klauder, JR
Draayer, JP
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
decatic anharmonic oscillator; erect solutions; energy spectrum; large N limit;
D O I
10.1016/S0375-9601(99)00651-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral problem of an O(N) invariant decatic anharmonic oscillator in N dimensions is considered for quasi-exactly solvable cases. The sextic anharmonic oscillator is a special case. The eigenvalue problem is found to be equivalent to that of an energy-dependent non-linear sl, rotor. The N dependence, in the large N limit, of the ground state energies for anharmonic polynomial potentials of degree 2n is also considered. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:131 / 136
页数:6
相关论文
empty
未找到相关数据