Quasi-exactly solvable cases of an N-dimensional symmetric decatic anharmonic oscillator

被引:15
|
作者
Pan, F [1 ]
Klauder, JR
Draayer, JP
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
decatic anharmonic oscillator; erect solutions; energy spectrum; large N limit;
D O I
10.1016/S0375-9601(99)00651-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral problem of an O(N) invariant decatic anharmonic oscillator in N dimensions is considered for quasi-exactly solvable cases. The sextic anharmonic oscillator is a special case. The eigenvalue problem is found to be equivalent to that of an energy-dependent non-linear sl, rotor. The N dependence, in the large N limit, of the ground state energies for anharmonic polynomial potentials of degree 2n is also considered. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 50 条
  • [1] Quasi-exactly solvable cases of an N-dimensional symmetric decatic anharmonic oscillator
    Pan, Feng
    Klauder, J.R.
    Draayer, J.P.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 262 (2-3): : 131 - 136
  • [2] Quasi-exactly Solvable Cases of the N-Dimensional Symmetric Quartic Anharmonic Oscillator
    Pan Feng
    Xie Ming-Xia
    Shi Chang-Liang
    Draayer, J. P.
    CHINESE PHYSICS LETTERS, 2012, 29 (07)
  • [3] The quantum anharmonic oscillator and quasi-exactly solvable Bose systems
    Dolya, SN
    Zaslavskii, OB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : L369 - L374
  • [4] A New Quasi-Exactly Solvable Problem and Its Connection with an Anharmonic Oscillator
    杨大宝
    张福林
    陈景灵
    CommunicationsinTheoreticalPhysics, 2010, 54 (10) : 654 - 660
  • [5] A New Quasi-Exactly Solvable Problem and Its Connection with an Anharmonic Oscillator
    Yang Da-Bao
    Zhang Fu-Lin
    Chen Jing-Ling
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (04) : 654 - 660
  • [6] Analytical study of the γ-unstable Bohr Hamiltonian with quasi-exactly solvable decatic potential
    Sobhani, Hadi
    Hassanabadi, Hassan
    Bonatsos, Dennis
    Pan, Feng
    Cui, Sai
    Feng, Ziwei
    Draayer, Jerry P.
    EUROPEAN PHYSICAL JOURNAL A, 2020, 56 (02):
  • [7] Novel quasi-exactly solvable models with anharmonic singular potentials
    Agboola, Davids
    Zhang, Yao-Zhong
    ANNALS OF PHYSICS, 2013, 330 : 246 - 262
  • [8] Quasi-exactly solvable polynomial extensions of the quantum harmonic oscillator
    Quesne, Christiane
    SYMMETRIES IN SCIENCE XVII, 2018, 1071
  • [9] Quasi-exactly solvable decatic model description of nuclei near the X(5) critical point
    Sobhani, Hadi
    Hassanabadi, Hassan
    Bonatsos, Dennis
    Pan, Feng
    Draayer, Jerry P.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (01)
  • [10] PT-symmetric, quasi-exactly solvable matrix Hamiltonians
    Brihaye, Yves
    Nininahazwe, Ancilla
    Mandal, Bhabani Prasad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (43) : 13063 - 13073