A ZnO/ZnO:Cr isostructural nanojunction electrode for photoelectrochemical water splitting

被引:28
作者
Shen, Shaohua [1 ,2 ]
Kronawitter, Coleman X. [2 ]
Jiang, Jiangang [1 ]
Guo, Penghui [1 ]
Guo, Liejin [1 ]
Mao, Samuel S. [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xian 710049, Shaanxi, Peoples R China
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Mech Engn, Environm Energy Technol Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
ZnO nanorods; Water splitting; Photoanodes; Nanojunction; Cr doping; PHOTOCATALYTIC PROPERTIES; NANOROD ARRAYS; ZNO; CR; SPECTROSCOPY; PERFORMANCE; GENERATION; STABILITY; DESIGNS; GROWTH;
D O I
10.1016/j.nanoen.2013.03.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fabrication and photoelectrochemical characterization of a ZnO/ZnO:Cr isostructural nanojunction electrode is presented. When compared to its constituent components the isostructural nanojunction showed superior performance for water splitting under simulated solar light and visible light (lambda> 510 nm) illumination. In the engineered structure, the presence of intra-bandgap states associated with Cr impurities increases optical absorption, and the nanorod morphology provides a direct pathway for transport of photo-excited electrons to the back contact. The overall photoelectrochemical performance of the ZnO/ZnO:Cr engineered structure is relatively low, however the concept may prove to be applicable to more optimized structures or material systems. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:958 / 965
页数:8
相关论文
共 39 条
[1]  
Augustynski J., 2006, P SPIE INT SOC OPTIC, V6340
[2]   Nano-architecture and material designs for water splitting photoelectrodes [J].
Chen, Hao Ming ;
Chen, Chih Kai ;
Liu, Ru-Shi ;
Zhang, Lei ;
Zhang, Jiujun ;
Wilkinson, David P. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (17) :5654-5671
[3]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[4]   A building block approach to photochemical water-splitting catalysts based on layered niobate nanosheets [J].
Compton, Owen C. ;
Mullet, Cory H. ;
Chiang, Shirley ;
Osterloh, Frank E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) :6202-6208
[5]   Mechanistic study of ZnO nanorod array electrodeposition [J].
El Belghiti, H. ;
Pauporte, T. ;
Lincot, D. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (10) :2360-2364
[6]  
Hassel M., 1996, Surface Science Spectra, V4, P246, DOI 10.1116/1.1247795
[7]   Effect of Electrolytes on the Selectivity and Stability of n-type WO3 Photoelectrodes for Use in Solar Water Oxidation [J].
Hill, James C. ;
Choi, Kyoung-Shin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14) :7612-7620
[8]   Photocatalytic hydrogen production from water over m-doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation (λ > 420 nm) [J].
Hwang, DW ;
Kirn, HG ;
Lee, JS ;
Kim, J ;
Li, W ;
Oh, SH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (06) :2093-2102
[9]   Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties [J].
Jehl, Z. ;
Rousset, J. ;
Donsanti, F. ;
Renou, G. ;
Naghavi, N. ;
Lincot, D. .
NANOTECHNOLOGY, 2010, 21 (39)
[10]   Engineering Impurity Distributions in Photoelectrodes for Solar Water Oxidation [J].
Kronawitter, Coleman X. ;
Ma, Zhixun ;
Liu, Dongfang ;
Mao, Samuel S. ;
Antoun, Bonnie R. .
ADVANCED ENERGY MATERIALS, 2012, 2 (01) :52-57