Weakly based modules over Dedekind domains

被引:6
|
作者
Hrbek, Michal [1 ]
Ruzicka, Pavel [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
关键词
Minimal generating set; Weak basis; Dedekind domain; Local; Torsion; Semisimple;
D O I
10.1016/j.jalgebra.2013.09.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a subset X of a left R-module M is weakly independent provided that whenever a(1)x(1) + ... + a(n)x(n) = 0 for pairwise distinct elements x(1), ... , x(n) form X, then none of a(1), ... , a(n) is invertible in R. Weakly independent generating sets (we call them weak bases) are exactly generating sets minimal with respect to inclusion. The aim of the paper is to characterize modules over Dedekind domains possessing a weak basis. We will characterize them as follows: Let R be a Dedekind domain and let M be a x-generated R-module, for some infinite cardinal x. Then M has a weak basis iff at least one of the following conditions is satisfied: (1) There are two different prime ideals P, Q of R such that dim(R/P) (M/PM) = dim(R/Q) (M/QM) = x; (2) There are a prime ideal P of R and a decomposition M similar or equal to F circle plus N where F is a free module and dim(R/P) (tau N/P tau N) = gen(N); (3) There is a projection of M onto an R-module circle plus(P is an element of Spec(R)) V-P, where V-P is a vector space over R/P with dim(R/P)(V-P) < x for each P is an element of Spec(R) and Sigma(P is an element of Spec(R)) dim(R/P)(V-P)=x. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 268
页数:18
相关论文
共 50 条
  • [1] Regularly weakly based modules over right perfect rings and Dedekind domains
    Michal Hrbek
    Pavel Růžička
    Czechoslovak Mathematical Journal, 2017, 67 : 367 - 377
  • [2] Regularly weakly based modules over right perfect rings and Dedekind domains
    Hrbek, Michal
    Ruzicka, Pavel
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 367 - 377
  • [3] Comultiplication modules over a pullback of Dedekind domains
    Reza Ebrahimi Atani
    Shahabaddin Ebrahimi Atani
    Czechoslovak Mathematical Journal, 2009, 59 : 1103 - 1114
  • [4] Comultiplication modules over a pullback of Dedekind domains
    Atani, Reza Ebrahimi
    Atani, Shahabaddin Ebrahimi
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 1103 - 1114
  • [5] Notes on model theory of modules over Dedekind domains
    Gregory, Lorna
    Herzog, Ivo
    Toffalori, Carlo
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (01): : 11 - 39
  • [6] WEAK MULTIPLICATION MODULES OVER A PULLBACK OF DEDEKIND DOMAINS
    Atani, S. Ebrahimi
    Farzalipour, F.
    COLLOQUIUM MATHEMATICUM, 2009, 114 (01) : 99 - 112
  • [7] A CHARACTERIZATION OF GOLDIE EXTENDING MODULES OVER DEDEKIND DOMAINS
    Akalan, Evrim
    Birkenmeier, Gary F.
    Tercan, Adnan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (06) : 1291 - 1299
  • [8] Notes on model theory of modules over Dedekind domains
    Lorna Gregory
    Ivo Herzog
    Carlo Toffalori
    Bollettino dell'Unione Matematica Italiana, 2024, 17 : 11 - 39
  • [9] Certain chain conditions in modules over dedekind domains and related rings
    Campos, Esperanza Sanchez
    Smith, Patrick F.
    MODULES AND COMODULES, 2008, : 125 - +
  • [10] HIGH POWERS IN ENDOMORPHISM RINGS OVER DEDEKIND DOMAINS
    Chirvasitu, Alexandru
    JOURNAL OF COMMUTATIVE ALGEBRA, 2024, 16 (03) : 257 - 265