Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred Etching Directions

被引:153
作者
Huang, Zhipeng [1 ]
Shimizu, Tomohiro [1 ]
Senz, Stephan [1 ]
Zhang, Zhang [1 ]
Zhang, Xuanxiong [1 ,3 ]
Lee, Woo [1 ,2 ]
Geyer, Nadine [1 ]
Goesele, Ulrich [1 ]
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[2] KRISS, Taejon 305340, South Korea
[3] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
关键词
SILVER NANOPARTICLES; SI NANOWIRES; DIAMETER; NANOHOLES; GROWTH; PERFORMANCE; FABRICATION; TRANSPORT; DEVICES; UNIFORM;
D O I
10.1021/nl803558n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The metal-assisted etching direction of Si(110) substrates was found to be dependent upon the morphology of the deposited metal catalyst. The etching direction of a Si(110) substrate was found to be one of the two crystallographically preferred < 100 > directions in the case of isolated metal particles or a small area metal mesh with nanoholes. In contrast, the etching proceeded in the vertical [(1) over bar(1) over bar0] direction, when the lateral size of the catalytic metal mesh was sufficiently large. Therefore, the direction of etching and the resulting nanostructures obtained by metal-assisted etching can be easily controlled by an: appropriate choice of the morphology of the deposited metal catalyst. On the basis of this finding, a generic method was developed for the fabrication of wafer-scale vertically aligned arrays of epitaxial [110] Si nanowires on a Si(110) substrate. The method utilized a thin metal film with an extended array of pores as an etching catalyst based on an ultrathin porous anodic alumina mask, while a prepatterning of the substrate prior to the metal depostion is not necessary. The diameter of Si nanowires can be easily controlled by-a combination of the pore diameter of the porous alumina film and varying the thickness of the deposited metal film.
引用
收藏
页码:2519 / 2525
页数:7
相关论文
共 41 条
[1]   Direct Quantification of Gold along a Single Si Nanowire [J].
Bailly, A. ;
Renault, O. ;
Barrett, N. ;
Zagonel, L. F. ;
Gentile, P. ;
Pauc, N. ;
Dhalluin, F. ;
Baron, T. ;
Chabli, A. ;
Cezar, J. C. ;
Brookes, N. B. .
NANO LETTERS, 2008, 8 (11) :3709-3714
[2]  
Buin AK, 2008, NANO LETT, V8, P760, DOI [10.1021/nl0727314, 10.1021/nI0727314]
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature [J].
Chen, Chia-Yun ;
Wu, Chi-Sheng ;
Chou, Chia-Jen ;
Yen, Ta-Jen .
ADVANCED MATERIALS, 2008, 20 (20) :3811-+
[5]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[6]   Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications [J].
Fang, Hui ;
Li, Xudong ;
Song, Shuang ;
Xu, Ying ;
Zhu, Jing .
NANOTECHNOLOGY, 2008, 19 (25)
[7]   Silicon vertically integrated nanowire field effect transistors [J].
Goldberger, Josh ;
Hochbaum, Allon I. ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2006, 6 (05) :973-977
[8]   Silicon CMOS devices beyond scaling [J].
Haensch, W. ;
Nowak, E. J. ;
Dennard, R. H. ;
Solomon, P. M. ;
Bryant, A. ;
Dokumaci, O. H. ;
Kumar, A. ;
Wang, X. ;
Johnson, J. B. ;
Fischetti, M. V. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2006, 50 (4-5) :339-361
[9]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[10]   Strain-driven electronic band structure modulation of Si nanowires [J].
Hong, Ki-Ha ;
Kim, Jongseob ;
Lee, Sung-Hoon ;
Shin, Jai Kwang .
NANO LETTERS, 2008, 8 (05) :1335-1340