Thermoelectric properties of materials near the band crossing line in Mg2Sn-Mg2Ge-Mg2Si system

被引:109
作者
Mao, Jun [1 ,2 ,3 ]
Kim, Hee Seok [1 ,2 ]
Shuai, Jing [1 ,2 ]
Liu, Zihang [1 ,2 ,4 ,5 ]
He, Ran [1 ,2 ]
Saparamadu, Udara [1 ,2 ]
Tian, Fei [1 ,2 ]
Liu, Weishu [1 ,2 ]
Ren, Zhifeng [1 ,2 ]
机构
[1] Univ Houston, Dept Phys, Houston, TX 77004 USA
[2] Univ Houston, Texas Ctr Superconduct, Houston, TX USA
[3] Univ Houston, Dept Mech Engn, Houston, TX USA
[4] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Peoples R China
[5] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
关键词
Mg2Sn-Mg2Ge-Mg2Si; Thermoelectric; Output power; Efficiency; SOLID-SOLUTIONS; FIGURE; MERIT; POWER; MG; BI; ENHANCEMENT; TRANSPORT; GE; SI;
D O I
10.1016/j.actamat.2015.11.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric properties of materials with compositions on and near the band crossing line connecting Mg(2)Sn(0.76)sGe(0.22)Sb(0.015) and Mg2Sn0.015Si0.3Sb0.015 in the Mg2Sn-Mg2Ge-Mg2Si system are investigated. Although ZTs are very similar, power factors are different. On the line, the power factor decreases from Mg2Sn0.76Ge0.22Sb0.015 to Mg2Sn0.685Si0.3Sb0.015, and off the line, the power factor also decreases. The output power and energy conversion efficiency are calculated using engineering power factor (PF)(eng) and figure of merit (ZT)(eng). It is shown that although similar energy conversion efficiency of 11% could be achieved for all compositions studied, the output power are different, increasing from similar to 9.1 W cm(-2) for Mg2Sn0.765Si0.3Sb0.015 to similar to 10.3 W cm(-2) for Mg2Sn0.765Ge0.22Sb0.015, due to the different power factors. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:633 / 642
页数:10
相关论文
共 50 条
[1]   Solid-state synthesis of thermoelectric materials in Mg-Si-Ge system [J].
Aizawa, T ;
Song, R ;
Yamamoto, A .
MATERIALS TRANSACTIONS, 2005, 46 (07) :1490-1496
[2]  
[Anonymous], 2006, THERMOELECTRICS HDB, DOI DOI 10.1201/9781420038903
[3]  
[Anonymous], 2009, INTRO THERMOELECTRIC
[4]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[5]  
Birkholz U., 1988, PROC 7 INT C THERMOE, P124
[6]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[7]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[8]   Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions [J].
Du, Zhengliang ;
Zhu, Tiejun ;
Chen, Yi ;
He, Jian ;
Gao, Hongli ;
Jiang, Guangyu ;
Tritt, Terry M. ;
Zhao, Xinbing .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (14) :6838-6844
[9]   Transport properties of Mg2X0.4Sn0.6 solid solutions (X = Si, Ge) with p-type conductivity [J].
Fedorov, M. I. ;
Zaitsev, V. K. ;
Eremin, I. S. ;
Gurieva, E. A. ;
Burkov, A. T. ;
Konstantinov, P. P. ;
Vedernikov, M. V. ;
Samunin, A. Yu. ;
Isachenko, G. N. ;
Shabaldin, A. A. .
PHYSICS OF THE SOLID STATE, 2006, 48 (08) :1486-1490
[10]  
Fedorov M.I., 2005, P 24 INT C THERM CLE, P134