Oxygen vacancies in high dielectric constant oxides La2O3, Lu2O3, and LaLuO3

被引:41
作者
Xiong, Ka [1 ]
Robertson, John [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
conduction bands; density functional theory; lanthanum compounds; lutetium compounds; permittivity; vacancies (crystal); GATE DIELECTRICS; BAND-STRUCTURE; DEPOSITION; DEVICES; LAYER;
D O I
10.1063/1.3176214
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present first principles calculations of the energy levels of the oxygen vacancy in La2O3, Lu2O3, and LaLuO3. The levels are found to lie above the Si gap when aligned using the experimental band offsets. In hexagonal La2O3, Lu2O3, and LaLuO3, oxygen vacancies with four neighbors behave similarly to those in HfO2, which are identified as the main electron trap, while oxygen vacancies with six neighbors have no negative charged state so that they are less important for charge trapping. Oxygen vacancies in perovskite LaLuO3 only have positive charge state so they do not act as electron trap.
引用
收藏
页数:3
相关论文
共 26 条
[1]  
[Anonymous], INT EL DEV M
[2]   Ab initio calculations of doping mechanisms in SrTiO3 [J].
Astala, RK ;
Bristowe, PD .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2004, 12 (01) :79-90
[3]   Electrical characterization of amorphous lanthanum aluminate thin films grown by molecular-beam deposition on silicon [J].
Edge, LF ;
Schlom, DG ;
Sivasubramani, P ;
Wallace, RM ;
Holländer, B ;
Schubert, J .
APPLIED PHYSICS LETTERS, 2006, 88 (11)
[4]   Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on silicon [J].
Edge, LF ;
Schlom, DG ;
Brewer, RT ;
Chabal, YJ ;
Williams, JR ;
Chambers, SA ;
Hinkle, C ;
Lucovsky, G ;
Yang, Y ;
Stemmer, S ;
Copel, M ;
Holländer, B ;
Schubert, J .
APPLIED PHYSICS LETTERS, 2004, 84 (23) :4629-4631
[5]   Negative oxygen vacancies in HfO2 as charge traps in high-k stacks [J].
Gavartin, J. L. ;
Ramo, D. Munoz ;
Shluger, A. L. ;
Bersuker, G. ;
Lee, B. H. .
APPLIED PHYSICS LETTERS, 2006, 89 (08)
[6]   Composition, chemical structure, and electronic band structure of rare earth oxide/Si(100) interfacial transition layer [J].
Hattori, T ;
Yoshida, T ;
Shiraishi, T ;
Takahashi, K ;
Nohira, H ;
Joumori, S ;
Nakajima, K ;
Suzuki, M ;
Kimura, K ;
Kashiwagi, I ;
Ohshima, C ;
Ohmi, S ;
Iwai, H .
MICROELECTRONIC ENGINEERING, 2004, 72 (1-4) :283-287
[7]   Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics [J].
Kerber, A ;
Cartier, E ;
Pantisano, L ;
Degraeve, R ;
Kauerauf, T ;
Kim, Y ;
Hou, A ;
Groeseneken, G ;
Maes, HE ;
Schwalke, U .
IEEE ELECTRON DEVICE LETTERS, 2003, 24 (02) :87-89
[8]   Gate stack technology for nanoscale devices [J].
Lee, Byoung Hun ;
Oh, Jungwoo ;
Tseng, Hsing Huang ;
Jammy, Rajarao ;
Huff, Howard .
MATERIALS TODAY, 2006, 9 (06) :32-40
[9]   Amorphous lanthanum lutetium oxide thin films as an alternative high-κ gate dielectric [J].
Lopes, J. M. J. ;
Roeckerath, M. ;
Heeg, T. ;
Rije, E. ;
Schubert, J. ;
Mantl, S. ;
Afanas'ev, V. V. ;
Shamuilia, S. ;
Stesmans, A. ;
Jia, Y. ;
Schlom, D. G. .
APPLIED PHYSICS LETTERS, 2006, 89 (22)
[10]  
Milman V, 2000, INT J QUANTUM CHEM, V77, P895, DOI 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO