Spontaneous light-induced Turing patterns in a dye-doped twisted nematic layer

被引:11
作者
Andrade-Silva, Ignacio [1 ,2 ]
Bortolozzo, Umberto [3 ]
Clerc, Marcel G. [1 ,2 ]
Gonzalez-Cortes, Gregorio [1 ,2 ]
Residori, Stefania [3 ]
Wilson, Mario [4 ]
机构
[1] Univ Chile, Dept Fis, Casilla 487-3, Santiago, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Millennium Inst Res Opt, Casilla 487-3, Santiago, Chile
[3] Univ Nice Sophia Antipolis, CNRS, UMR 7010, Inst Phys Nice, 1361 Route Lucioles, F-06560 Valbonne, France
[4] CONACYT CICESE, Carretera Ensenada Tijuana 3918, Ensenada 22860, Baja California, Mexico
关键词
PHASE;
D O I
10.1038/s41598-018-31206-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical pattern formation is usually due either to the combination of diffraction and nonlinearity in a Kerr medium or to the temporal modulation of light in a photosensitive chemical reaction. Here, we show a different mechanism by which light spontaneously induces stripe domains between nematic states in a twisted nematic liquid crystal layer doped with azo-dyes. Thanks to the photoisomerization process of the dopants, light in the absorption band of the dopants creates spontaneous patterns without the need of temporal modulation, diffraction, Kerr or other optical nonlinearity, but based on the different scales for dopant transport processes and nematic order parameter, which identifies a genuine Turing mechanism for this instability. Theoretically, the emergence of the stripe patterns is described on the basis of a model for the dopant concentration coupled with the nematic order parameter.
引用
收藏
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 2006, Patterns and Interfaces in Dissipative Dynamics
[2]   DESTABILIZATION OF A FLAT NEMATIC-ISOTROPIC INTERFACE [J].
BECHHOEFER, J ;
SIMON, AJ ;
LIBCHABER, A ;
OSWALD, P .
PHYSICAL REVIEW A, 1989, 40 (04) :2042-2056
[3]  
Blinov LM, 2011, STRUCTURE AND PROPERTIES OF LIQUID CRYSTALS, P1, DOI 10.1007/978-90-481-8829-1
[4]   Inhomogeneous Freedericksz transition in nematic liquid crystals [J].
Chevallard, C ;
Clerc, MG .
PHYSICAL REVIEW E, 2002, 65 (01)
[5]   GROWTH OF A SMECTIC-A FROM A BENT NEMATIC PHASE AND SMECTIC LIGHT VALVE [J].
CLADIS, PE ;
TORZA, S .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (02) :584-599
[6]  
Cross M., 2009, Pattern Formation and Dynamics in Nonequilibrium Systems
[7]   After 1952: The later development of Alan Turing's ideas on the mathematics of pattern formation [J].
Dawes, Jonathan H. P. .
HISTORIA MATHEMATICA, 2016, 43 (01) :49-64
[8]  
de Gennes PG., 1993, The physics of liquid crystals, V2nd
[9]  
GLANSDORFF P, 1971, P306
[10]  
Haken H., 1977, Synergetics-.Introduction and advanced topics