Understanding the Atomic-Scale Contrast in Kelvin Probe Force Microscopy

被引:54
作者
Nony, Laurent [1 ,2 ]
Foster, Adam S. [3 ,4 ]
Bocquet, Franck [1 ,2 ]
Loppacher, Christian [1 ,2 ]
机构
[1] Aix Marseille Univ, IM2NP, F-13397 Marseille 20, France
[2] CNRS, IM2NP, UMR 6242, Marseille, France
[3] Tampere Univ Technol, Dept Phys, FIN-33101 Tampere, Finland
[4] Helsinki Univ Technol, Dept Appl Phys, FIN-02015 Helsinki, Finland
基金
芬兰科学院;
关键词
CONTACT POTENTIAL DIFFERENCE; ULTRAHIGH-VACUUM; IONIC SURFACES; AFM;
D O I
10.1103/PhysRevLett.103.036802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a noncontact atomic force microscope simulator including a Kelvin module. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and contact potential difference contrasts were reported. The local contact potential difference does reflect the periodicity of the ionic crystal, but not the magnitude of its Madelung surface potential. The imaging mechanism relies on the induced polarization of the ions at the tip-surface interface owing to the modulation of the applied bias voltage. Our findings are in excellent agreement with previous theoretical expectations and experimental observations.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Resonant multi-frequency method for Kelvin probe force microscopy in air [J].
Ding, X. D. ;
Li, C. ;
Liang, Z. W. ;
Lin, G. C. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (10)
[32]   Resolution of Kelvin probe force microscopy in ultrahigh vacuum: comparison of experiment and simulation [J].
Sadewasser, S ;
Glatzel, T ;
Shikler, R ;
Rosenwaks, Y ;
Lux-Steiner, MC .
APPLIED SURFACE SCIENCE, 2003, 210 (1-2) :32-36
[33]   Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping [J].
Jakob, Devon S. ;
Li, Nengxu ;
Zhou, Huanping ;
Xu, Xiaoji G. .
SMALL, 2021, 17 (37)
[34]   The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe [J].
Jonsson, Martin ;
Thierry, Dominique ;
LeBozec, Nathalie .
CORROSION SCIENCE, 2006, 48 (05) :1193-1208
[35]   Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces [J].
Sommerhalter, C ;
Glatzel, T ;
Matthes, TW ;
Jäger-Waldau, A ;
Lux-Steiner, MC .
APPLIED SURFACE SCIENCE, 2000, 157 (04) :263-268
[36]   Atomic-scale surface science phenomena studied by scanning tunneling microscopy [J].
Besenbacher, F. ;
Lauritsen, J. V. ;
Linderoth, T. R. ;
Laegsgaard, E. ;
Vang, R. T. ;
Wendt, S. .
SURFACE SCIENCE, 2009, 603 (10-12) :1315-1327
[37]   Phase contrast and operation regimes in multifrequency atomic force microscopy [J].
Santos, Sergio .
APPLIED PHYSICS LETTERS, 2014, 104 (14)
[38]   Studies of probe tip materials by atomic force microscopy: a review [J].
Xu, Ke ;
Liu, Yuzhe .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 :1256-1267
[39]   Image contrast reversals in contact resonance atomic force microscopy [J].
Ma, Chengfu ;
Chen, Yuhang ;
Wang, Tian .
AIP ADVANCES, 2015, 5 (02)
[40]   Atomic-scale electric capacitive change detected with a charge amplifier installed in a non-contact atomic force microscope [J].
Nogami, Makoto ;
Sasahara, Akira ;
Arai, Toyoko ;
Tomitori, Masahiko .
APPLIED PHYSICS EXPRESS, 2016, 9 (04)