Statistical Shape Model to 3D Ultrasound Registration for Spine Interventions Using Enhanced Local Phase Features

被引:0
作者
Hacihaliloglu, Ilker [1 ]
Rasoulian, Abtin [1 ]
Rohling, Robert N. [1 ]
Abolmaesumi, Purang [1 ]
机构
[1] Univ British Columbia, Dept Elect Engn, Vancouver, BC, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II | 2013年 / 8150卷
基金
加拿大健康研究院;
关键词
Ultrasound; local phase; spinal injection; gradient energy tensor; image registration; statistical shape model; BONE SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate registration of ultrasound images to statistical shape models is a challenging problem in percutaneous spine injection procedures due to the typical imaging artifacts inherent to ultrasound. In this paper we propose a robust and accurate registration method that matches local phase bone features extracted from ultrasound images to a statistical shape model. The local phase information for enhancing the bone surfaces is obtained using a gradient energy tensor filter, which combines advantages of the monogenic scale-space and Gaussian scale-space filters, resulting in an improved simultaneous estimation of phase and orientation information. A novel statistical shape model was built by separating the pose statistics from the shape statistics. This model is then registered to the local phase bone surfaces using an iterative expectation maximization registration technique. Validation on 96 in vivo clinical scans obtained from eight patients resulted in a root mean square registration error of 2 mm (SD: 0.4 mm), which is below the clinically acceptable threshold of 3.5 mm. The improvement achieved in registration accuracy using the new features was also significant (p < 0.05) compared to state of the art local phase image processing methods.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 50 条
  • [41] Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching
    Inês Machado
    Matthew Toews
    Jie Luo
    Prashin Unadkat
    Walid Essayed
    Elizabeth George
    Pedro Teodoro
    Herculano Carvalho
    Jorge Martins
    Polina Golland
    Steve Pieper
    Sarah Frisken
    Alexandra Golby
    William Wells
    International Journal of Computer Assisted Radiology and Surgery, 2018, 13 : 1525 - 1538
  • [42] 3D ultrasound-CT registration of the liver using combined landmark-intensity information
    Thomas Lange
    Nils Papenberg
    Stefan Heldmann
    Jan Modersitzki
    Bernd Fischer
    Hans Lamecker
    Peter M. Schlag
    International Journal of Computer Assisted Radiology and Surgery, 2009, 4 : 79 - 88
  • [43] A MODEL-BASED REGISTRATION APPROACH OF PREOPERATIVE MRI WITH 3D ULTRASOUND OF THE LIVER FOR INTERVENTIONAL GUIDANCE PROCEDURES
    Kadoury, S.
    Zagorchev, L.
    Wood, B. J.
    Venkatesan, A.
    Weese, J.
    Jago, J.
    Kruecker, J.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 952 - 955
  • [44] Accurate Multimodal Liver Registration of 3D Ultrasound and CT Volume: An Open Dataset and a Model Fusion Method
    Xu, Yawen
    Wang, Ziwen
    Yao, Liang
    Ji, Wenxiu
    Zhao, Baoliang
    Yu, Gang
    Lei, Long
    Zhang, Peng
    Hu, Ying
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [45] Correspondence free 3D statistical shape model fitting to sparse X-ray projections
    Baka, N.
    Niessen, W. J.
    Kaptein, B. L.
    van Walsum, T.
    Ferrarini, L.
    Reiber, J. H. C.
    Lelieveldt, B. P. F.
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [46] Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration
    Hopp, T.
    Duric, N.
    Ruiter, N. V.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 40 : 170 - 181
  • [47] Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC2 Metric
    Fuerst, Bernhard
    Wein, Wolfgang
    Mueller, Markus
    Navab, Nassir
    MEDICAL IMAGE ANALYSIS, 2014, 18 (08) : 1312 - 1319
  • [48] Detection of distal forearm fractures using bone-enhanced 3D ultrasound imaging
    Dixon, Adam J.
    Bottecher, Von F.
    Thom, Christopher D.
    Sochor, Mark R.
    Perry, Brandon J.
    Sochor, Sara H.
    Mauldin, F. William, Jr.
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [49] 3D Ultrasound-CT Registration in Orthopaedic Trauma Using GMM Registration with Optimized Particle Simulation-Based Data Reduction
    Hacihaliloglu, Ilker
    Brounstein, Anna
    Guy, Pierre
    Hodgson, Antony
    Abugharbieh, Rafeef
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II, 2012, 7511 : 82 - 89
  • [50] Mechanistic study of ultrasound and microbubble enhanced cancer therapy in a 3D vascularized microfluidic cancer model
    Zhao, Pu
    Peng, Yingxiao
    Wang, Yanjie
    Hu, Yi
    Qin, Jixing
    Li, Dachao
    Yan, Kun
    Fan, Zhenzhen
    ULTRASONICS SONOCHEMISTRY, 2023, 101