Bayesian meta-analysis models for cross cancer genomic investigation of pleiotropic effects using group structure

被引:6
作者
Baghfalaki, Taban [1 ]
Sugier, Pierre-Emmanuel [2 ,3 ,4 ,5 ]
Truong, Therese [5 ,6 ]
Pettitt, Anthony N. [2 ,3 ]
Mengersen, Kerrie [2 ,3 ]
Liquet, Benoit [3 ,4 ,7 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Stat, Tehran, Iran
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
[3] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4000, Australia
[4] Univ Pau & Pays Adour, Lab Math & Leurs Applicat Pau, Pau, France
[5] Paris Sud Univ, Paris Saclay Univ, CESP Ctr Res Epidemiol & Populat Hlth, INSERM, Villejuif, France
[6] Gustave Roussy, Villejuif, France
[7] Macquarie Univ, Dept Math & Stat, Sydney, NSW, Australia
关键词
group variable selection; Markov chain Monte Carlo; pleiotropy; sparsity; spike and slab priors; DIFFERENTIATED THYROID-CANCER; VARIABLE SELECTION; RISK-FACTORS;
D O I
10.1002/sim.8855
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An increasing number of genome-wide association studies (GWAS) summary statistics is made available to the scientific community. Exploiting these results from multiple phenotypes would permit identification of novel pleiotropic associations. In addition, incorporating prior biological information in GWAS such as group structure information (gene or pathway) has shown some success in classical GWAS approaches. However, this has not been widely explored in the context of pleiotropy. We propose a Bayesian meta-analysis approach (termed GCPBayes) that uses summary-level GWAS data across multiple phenotypes to detect pleiotropy at both group-level (gene or pathway) and within group (eg, at the SNP level). We consider both continuous and Dirac spike and slab priors for group selection. We also use a Bayesian sparse group selection approach with hierarchical spike and slab priors that enables us to select important variables both at the group level and within group. GCPBayes uses a Bayesian statistical framework based on Markov chain Monte Carlo (MCMC) Gibbs sampling. It can be applied to multiple types of phenotypes for studies with overlapping or nonoverlapping subjects, and takes into account heterogeneity in the effect size and allows for the opposite direction of the genetic effects across traits. Simulations show that the proposed methods outperform benchmark approaches such as ASSET and CPBayes in the ability to retrieve pleiotropic associations at both SNP and gene-levels. To illustrate the GCPBayes method, we investigate the shared genetic effects between thyroid cancer and breast cancer in candidate pathways.
引用
收藏
页码:1498 / 1518
页数:21
相关论文
共 30 条
[1]   The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers [J].
Amos, Christopher I. ;
Dennis, Joe ;
Wang, Zhaoming ;
Byun, Jinyoung ;
Schumacher, Fredrick R. ;
Gayther, Simon A. ;
Casey, Graham ;
Hunter, David J. ;
Sellers, Thomas A. ;
Gruber, Stephen B. ;
Dunning, Alison M. ;
Michailidou, Kyriaki ;
Fachal, Laura ;
Doheny, Kimberly ;
Spurdle, Amanda B. ;
Li, Yafang ;
Xiao, Xiangjun ;
Romm, Jane ;
Pugh, Elizabeth ;
Coetzee, Gerhard A. ;
Hazelett, Dennis J. ;
Bojesen, Stig E. ;
Caga-Anan, Charlisse ;
Haiman, Christopher A. ;
Kamal, Ahsan ;
Luccarini, Craig ;
Tessier, Daniel ;
Vincent, Daniel ;
Bacot, Francois ;
Van den Berg, David J. ;
Nelson, Stefanie ;
Demetriades, Stephen ;
Goldgar, David E. ;
Couch, Fergus J. ;
Forman, Judith L. ;
Giles, Graham G. ;
Conti, David V. ;
Bickeboeller, Heike ;
Risch, Angela ;
Waldenberger, Melanie ;
Brueske-Hohlfeld, Irene ;
Hicks, Belynda D. ;
Ling, Hua ;
McGuffog, Lesley ;
Lee, Andrew ;
Kuchenbaecker, Karoline ;
Soucy, Penny ;
Manz, Judith ;
Cunningham, Julie M. ;
Butterbach, Katja .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2017, 26 (01) :126-135
[2]  
[Anonymous], 1994, Technical Report 27
[3]  
Bhattacharjee S, 2019, ASSET R PACKAGE SUBS
[4]   A Subset-Based Approach Improves Power and Interpretation for the Combined Analysis of Genetic Association Studies of Heterogeneous Traits [J].
Bhattacharjee, Samsiddhi ;
Rajaraman, Preetha ;
Jacobs, Kevin B. ;
Wheeler, William A. ;
Melin, Beatrice S. ;
Hartge, Patricia ;
Yeager, Meredith ;
Chung, Charles C. ;
Chanock, Stephen J. ;
Chatterjee, Nilanjan .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (05) :821-835
[5]  
Bradley E, 2012, LARGE SCALE INFERENC
[6]   General methods for monitoring convergence of iterative simulations [J].
Brooks, SP ;
Gelman, A .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (04) :434-455
[7]   The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 [J].
Buniello, Annalisa ;
MacArthur, Jacqueline A. L. ;
Cerezo, Maria ;
Harris, Laura W. ;
Hayhurst, James ;
Malangone, Cinzia ;
McMahon, Aoife ;
Morales, Joannella ;
Mountjoy, Edward ;
Sollis, Elliot ;
Suveges, Daniel ;
Vrousgou, Olga ;
Whetzel, Patricia L. ;
Amode, Ridwan ;
Guillen, Jose A. ;
Riat, Harpreet S. ;
Trevanion, Stephen J. ;
Hall, Peggy ;
Junkins, Heather ;
Flicek, Paul ;
Burdett, Tony ;
Hindorff, Lucia A. ;
Cunningham, Fiona ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1005-D1012
[8]  
Casella G, 2001, Biostatistics, V2, P485, DOI 10.1093/biostatistics/2.4.485
[9]   Risk of differentiated thyroid cancer in relation to adult weight, height and body shape over life: the French E3N cohort [J].
Clavel-Chapelon, Francoise ;
Guillas, Gwenaelle ;
Tondeur, Laura ;
Kernaleguen, Celine ;
Boutron-Ruault, Marie-Christine .
INTERNATIONAL JOURNAL OF CANCER, 2010, 126 (12) :2984-2990
[10]   Hormonal and reproductive risk factors of papillary thyroid cancer: A population-based case-control study in France [J].
Cordina-Duverger, Emilie ;
Leux, Christophe ;
Neri, Monica ;
Tcheandjieu, Catherine ;
Guizard, Anne-Valerie ;
Schvartz, Claire ;
Truong, Therese ;
Guenel, Pascal .
CANCER EPIDEMIOLOGY, 2017, 48 :78-84