Temperature-dependent optical properties of titanium nitride

被引:90
作者
Briggs, Justin A. [1 ,2 ]
Naik, Gururaj V. [3 ]
Zhao, Yang [2 ]
Petach, Trevor A. [4 ]
Sahasrabuddhe, Kunal [1 ]
Goldhaber-Gordon, David [4 ]
Melosh, Nicholas A. [2 ]
Dionne, Jennifer A. [2 ]
机构
[1] Stanford Univ, Dept Appl Phys, 348 Via Pueblo, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, 496 Lomita Mall, Stanford, CA 94305 USA
[3] Rice Univ, Dept Elect & Comp Engn, MS-378, Houston, TX 77251 USA
[4] Stanford Univ, Dept Phys, 382 Via Pueblo, Stanford, CA 94305 USA
关键词
REFRACTORY PLASMONICS; CONVERSION;
D O I
10.1063/1.4977840
中图分类号
O59 [应用物理学];
学科分类号
摘要
The refractory metal titanium nitride is promising for high-temperature nanophotonic and plasmonic applications, but its optical properties have not been studied at temperatures exceeding 400 degrees C. Here, we perform in-situ high-temperature ellipsometry to quantify the permittivity of TiN films from room temperature to 1258 degrees C. We find that the material becomes more absorptive at higher temperatures but maintains its metallic character throughout visible and near infrared frequencies. X-ray diffraction, atomic force microscopy, and mass spectrometry confirm that TiN retains its bulk crystal quality and that thermal cycling increases the surface roughness, reduces the lattice constant, and reduces the carbon and oxygen contaminant concentrations. The changes in the optical properties of the material are highly reproducible upon repeated heating and cooling, and the room-temperature properties are fully recoverable after cooling. Using the measured high-temperature permittivity, we compute the emissivity, surface plasmon polariton propagation length, and two localized surface plasmon resonance figures of merit as functions of temperature. Our results indicate that titanium nitride is a viable plasmonic material throughout the full temperature range explored.
引用
收藏
页数:5
相关论文
共 22 条
[1]   LATTICE-PARAMETERS AND THERMAL-EXPANSION OF TI(CXN1-X), ZR(CXN1-X), HF(CXN1-X) AND TIN1-X FROM 298-K TO 1473-K AS INVESTIGATED BY HIGH-TEMPERATURE X-RAY-DIFFRACTION [J].
AIGNER, K ;
LENGAUER, W ;
RAFAJA, D ;
ETTMAYER, P .
JOURNAL OF ALLOYS AND COMPOUNDS, 1994, 215 (1-2) :121-126
[2]  
[Anonymous], 2012, WVASE OP MAN
[3]   Fully CMOS-compatible titanium nitride nanoantennas [J].
Briggs, Justin A. ;
Naik, Gururaj V. ;
Petach, Trevor A. ;
Baum, Brian K. ;
Goldhaber-Gordon, David ;
Dionne, Jennifer A. .
APPLIED PHYSICS LETTERS, 2016, 108 (05)
[4]   Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer [J].
Challener, W. A. ;
Peng, Chubing ;
Itagi, A. V. ;
Karns, D. ;
Peng, Wei ;
Peng, Yingguo ;
Yang, XiaoMin ;
Zhu, Xiaobin ;
Gokemeijer, N. J. ;
Hsia, Y. -T. ;
Ju, G. ;
Rottmayer, Robert E. ;
Seigler, Michael A. ;
Gage, E. C. .
NATURE PHOTONICS, 2009, 3 (04) :220-224
[5]  
Christopher P, 2012, NAT MATER, V11, P1044, DOI [10.1038/nmat3454, 10.1038/NMAT3454]
[6]   Refractory Plasmonics [J].
Guler, Urcan ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
SCIENCE, 2014, 344 (6181) :263-264
[7]   Theoretical limits of thermophotovoltaic solar energy conversion [J].
Harder, NP ;
Würfel, P .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (05) :S151-S157
[8]   Experimental demonstration of titanium nitride plasmonic interconnects [J].
Kinsey, N. ;
Ferrera, M. ;
Naik, G. V. ;
Babicheva, V. E. ;
Shalaev, V. M. ;
Boltasseva, A. .
OPTICS EXPRESS, 2014, 22 (10) :12238-12247
[9]   Heat Assisted Magnetic Recording [J].
Kryder, Mark H. ;
Gage, Edward C. ;
Mcdaniel, Terry W. ;
Challener, William A. ;
Rottmayer, Robert E. ;
Ju, Ganping ;
Hsia, Yiao-Tee ;
Erden, M. Fatih .
PROCEEDINGS OF THE IEEE, 2008, 96 (11) :1810-1835
[10]   Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion [J].
Lalisse, Adrien ;
Tessier, Gilles ;
Plain, Jerome ;
Baffou, Guillaume .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (45) :25518-25528