Impact of water on CO2 capture by amino acid ionic liquids

被引:84
|
作者
McDonald, Jonathan L. [1 ]
Sykora, Richard E. [1 ]
Hixon, Paul [1 ]
Mirjafari, Arsalan [2 ]
Davis, James H., Jr. [1 ]
机构
[1] Univ S Alabama, Dept Chem, Mobile, AL 36688 USA
[2] Florida Gulf Coast Univ, Dept Chem & Math, Ft Myers, FL 33965 USA
基金
美国国家科学基金会;
关键词
Amino acid ionic liquid; CO2; capture; NMR; Single-crystal X-ray diffraction; TEMPERATURE; ABSORPTION; SYSTEMS; SALTS; MODEL;
D O I
10.1007/s10311-013-0435-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reversible capture of CO2 from fossil-fueled industries and the absorption of CO2 for natural-gas-sweetening purposes are industrial issues closely related to very important environmental, economical, and technological concerns. Biological amino acids can be used for task-specific ionic liquids for reversible CO2 capture. Several groups have reported efficient and reversible CO2 capture by such ionic liquids under rigorously dry conditions. However, we have observed that CO2 capture by amino acid ionic liquids is hugely impacted by the presence of water. In addition, the amino acid anions appear to play only a transitory role in the CO2 capture in the first minutes of exposure to a wet CO2 stream. Here, we studied the interaction of two ionic liquids-tetramethylammonium glycinate ([N-1111][Gly]) and tetraethylammonium prolinate ([N-2222][Pro])-with CO2 under wet conditions, by C-13-NMR. Results show that CO2 is initially captured in a carbamate form by the amine-functionalized anions of these salts. This capture mode is unambiguously confirmed by a single-crystal X-ray study of the CO2-ionic liquid complex. However, in solution, as additional CO2 is added, the carbamate releases the covalently bound CO2, and the CO2 remaining in solution shifts in form to an equilibrium mixture of carbonate and bicarbonate. Indeed, when the amount of CO2 present in the system exceeds about one-half mole per mole of ionic liquid present, the ionic liquid-carbamate complex is detected in only trace amounts, and the neutralized amino acids are readily identifiable by NMR.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [21] Application of ionic liquids in CO2 capture and conversion: A review
    Xing, Haoyu
    Yu, Fan
    Li, Xuhua
    Bao, Yinzhou
    Ye, Wenpei
    Li, Chen
    Zheng, Shengyang
    Huang, Manhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360
  • [22] Amino acid ionic liquids as potential candidates for CO2 capture: Combined density functional theory and molecular dynamics simulations
    Shaikh, Abdul Rajjak
    Ashraf, Muhammad
    AlMayef, Turki
    Chawla, Mohit
    Poater, Albert
    Cavallo, Luigi
    CHEMICAL PHYSICS LETTERS, 2020, 745 (745)
  • [23] New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids
    Yang, Qiwei
    Wang, Zhiping
    Bao, Zongbi
    Zhang, Zhiguo
    Yang, Yiwen
    Ren, Qilong
    Xing, Huabin
    Dai, Sheng
    CHEMSUSCHEM, 2016, 9 (08) : 806 - 812
  • [24] Water solubility and dynamics of CO2 capture ionic liquids having aprotic heterocyclic anions
    Wu, Hao
    Maginn, Edward J.
    FLUID PHASE EQUILIBRIA, 2014, 368 : 72 - 79
  • [25] CO2/CH4 Separation in Amino Acid Ionic Liquids, Polymerized Ionic Liquids, and Mixed Matrix Membranes
    Selvaraj, Gowri
    Wilfred, Cecilia Devi
    MOLECULES, 2024, 29 (06):
  • [26] Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica
    Hiremath, Vishwanath
    Jadhav, Arvind H.
    Lee, Hanyeong
    Kwon, Soonchul
    Seo, Jeong Gil
    CHEMICAL ENGINEERING JOURNAL, 2016, 287 : 602 - 617
  • [27] Construction of ZIF-8 and amino functionalized porous ionic liquids for efficient CO2 capture
    Yang, Jiaxi
    Gao, Dan
    Zhang, Heng
    Yi, Qun
    FUEL, 2024, 366
  • [28] Polymeric ionic liquids (PILs) for CO2 capture
    Sadeghpour, Mahsa
    Yusoff, Rozita
    Aroua, Mohamed Kheireddine
    REVIEWS IN CHEMICAL ENGINEERING, 2017, 33 (02) : 183 - 200
  • [29] CO2 capture by task specific ionic liquids (TSILs) and polymerized ionic liquids (PILs and AAPILs)
    Shahrom, Maisara Shahrom Raja
    Wilfred, Cecilia Devi
    Taha, AboBakr Khidir Ziyada
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 219 : 306 - 312
  • [30] Diamino protic ionic liquids for CO2 capture
    Vijayraghavan, R.
    Pas, Steven J.
    Izgorodina, Ekaterina I.
    MacFarlane, Douglas R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (46) : 19994 - 19999