Fronts and patterns in a spatially forced CDIMA reaction

被引:7
作者
Haim, Lev [1 ,2 ]
Hagberg, Aric [3 ]
Nagao, Raphael [4 ,5 ,6 ]
Steinberg, Asher Preska [7 ]
Dolnik, Milos [4 ,5 ]
Epstein, Irving R. [4 ,5 ]
Meron, Ehud [1 ,8 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Soroka Univ Med Ctr, Dept Oncol, IL-84101 Beer Sheva, Israel
[3] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Brandeis Univ, Dept Chem, Waltham, MA 02454 USA
[5] Brandeis Univ, Volen Ctr Complex Syst, Waltham, MA 02454 USA
[6] St Louis Univ, Dept Chem, St Louis, MO 63103 USA
[7] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[8] Ben Gurion Univ Negev, BIDR, Dept Solar Energy & Environm Phys, IL-84990 Sede Boqer, Israel
基金
美国国家科学基金会;
关键词
MALONIC-ACID; OSCILLATORY SYSTEMS; CHLORINE DIOXIDE; NONEQUILIBRIUM SYSTEMS; FREQUENCY LOCKING; EXTENDED SYSTEMS; IODINE; BREAKING;
D O I
10.1039/c4cp04261a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use the CDIMA chemical reaction and the Lengyel-Epstein model of this reaction to study resonant responses of a pattern-forming system to time-independent spatial periodic forcing. We focus on the 2 : 1 resonance, where the wavenumber of a one-dimensional periodic forcing is about twice the wavenumber of the natural stripe pattern that the unforced system tends to form. Within this resonance, we study transverse fronts that shift the phase of resonant stripe patterns by p. We identify phase fronts that shift the phase discontinuously, and pairs of phase fronts that shift the phase continuously, clockwise and anti-clockwise. We further identify a front bifurcation that destabilizes the discontinuous front and leads to a pair of continuous fronts. This bifurcation is the spatial counterpart of the nonequilibrium Ising-Bloch (NIB) bifurcation in temporally forced oscillatory systems. The spatial NIB bifurcation that we find occurs as the forcing strength is increased, unlike earlier studies of the NIB bifurcation. Furthermore, the bifurcation is subcritical, implying a range of forcing strength where both discontinuous Ising fronts and continuous Bloch fronts are stable. Finally, we find that both Ising fronts and Bloch fronts can form discrete families of bound pairs, and we relate arrays of these front pairs to extended rectangular and oblique patterns.
引用
收藏
页码:26137 / 26143
页数:7
相关论文
共 35 条
  • [1] Brauer G., 1963, HDB PREPARATIVE INOR
  • [2] EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN
    CASTETS, V
    DULOS, E
    BOISSONADE, J
    DEKEPPER, P
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (24) : 2953 - 2956
  • [3] BREAKING CHIRALITY IN NONEQUILIBRIUM SYSTEMS
    COULLET, P
    LEGA, J
    HOUCHMANDZADEH, B
    LAJZEROWICZ, J
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (11) : 1352 - 1355
  • [4] Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing
    Dolnik, Milos
    Bansagi, Tamas, Jr.
    Ansari, Sama
    Valent, Ivan
    Epstein, Irving R.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (27) : 12578 - 12583
  • [5] On the origin of traveling pulses in bistable systems
    Elphick, C
    Hagberg, A
    Malomed, BA
    Meron, E
    [J]. PHYSICS LETTERS A, 1997, 230 (1-2) : 33 - 37
  • [6] Multiphase patterns in periodically forced oscillatory systems
    Elphick, C
    Hagberg, A
    Meron, E
    [J]. PHYSICAL REVIEW E, 1999, 59 (05): : 5285 - 5291
  • [7] Epstein IR., 1998, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
  • [8] Controlled observation of a nonequilibrium Ising-Bloch transition in a nonlinear optical cavity -: art. no. 223903
    Esteban-Martín, A
    Taranenko, VB
    García, J
    de Valcárcel, GJ
    Roldán, E
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [9] Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with square spatial periodic forcing
    Feldman, Daniel
    Nagao, Raphael
    Bansagi, Tamas, Jr.
    Epstein, Irving R.
    Dolnik, Milos
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (18) : 6577 - 6583
  • [10] Rayleigh-Benard convection in the presence of spatial temperature modulations
    Freund, G.
    Pesch, W.
    Zimmermann, W.
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 673 : 318 - 348