Facile synthesis of Li2S-P2S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST)

被引:28
作者
Choi, Sunho [1 ]
Lee, Sewook [1 ]
Park, Jongyeop [1 ]
Nichols, William T. [1 ]
Shin, Dongwook [1 ]
机构
[1] Hanyang Univ, Div Mat Sci & Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
关键词
Solid electrolyte; Lithium phosphorus sulfide; Micron range particle size; Solution synthesis; All-solid-state battery; LITHIUM IONIC CONDUCTOR; THIO-LISICON; SYSTEM;
D O I
10.1016/j.apsusc.2018.02.270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A lithium ion conductive 75Li(2)S center dot 25P(2)S(5) glass-ceramics electrolyte is, for the first time, successfully synthesized via a new low-temperature solution technique (LTST) and compared to the conventional mechanical-milling technique. Both samples are composed of the highly lithium ion conductive thio-LISICON III analog phase. Due to the uniform dispersion of reactants in an organic liquid, the use of LTST produced significantly smaller and more uniform particle sizes (2.2 +/- 1.68 mu m) resulting in a 6.5 times higher specific surface area compared to the mechanically-milled sample. A pronounced enhancement of both the rate capability and cyclability is demonstrated for the LTST solid electrolyte sample due to the more intimate contact with the LiCoO2 active material. Furthermore, the LTST sample shows excellent electrochemical stability throughout the potential range of 1 to 5 V. These results suggest that the proposed technique using the optimized LTST process is promising for the preparation of 75Li(2)S center dot 25P(2)S(5) solid electrolytes for use in advanced Li-ion batteries. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:10 / 14
页数:5
相关论文
共 12 条
[1]  
Hayashi A, 2001, J AM CERAM SOC, V84, P477, DOI 10.1111/j.1151-2916.2001.tb00685.x
[2]   HIGH IONIC-CONDUCTIVITY IN LITHIUM LANTHANUM TITANATE [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T ;
UCHIDA, T ;
IKUTA, H ;
WAKIHARA, M .
SOLID STATE COMMUNICATIONS, 1993, 86 (10) :689-693
[3]   Lithium ionic conductor thio-LISICON -: The Li2S-GeS2-P2S5 system [J].
Kanno, R ;
Maruyama, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A742-A746
[4]   Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system [J].
Kanno, R ;
Hata, T ;
Kawamoto, Y ;
Irie, M .
SOLID STATE IONICS, 2000, 130 (1-2) :97-104
[5]   Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries [J].
Kim, Dong Hyeon ;
Oh, Dae Yang ;
Park, Kern Ho ;
Choi, Young Eun ;
Nam, Young Jin ;
Lee, Han Ah ;
Lee, Sang-Min ;
Jung, Yoon Seok .
NANO LETTERS, 2017, 17 (05) :3013-3020
[6]   Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4 [J].
Liu, Zengcai ;
Fu, Wujun ;
Payzant, E. Andrew ;
Yu, Xiang ;
Wu, Zili ;
Dudney, Nancy J. ;
Kiggans, Jim ;
Hong, Kunlun ;
Rondinone, Adam J. ;
Liang, Chengdu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (03) :975-978
[7]   High lithium ion conducting glass-ceramics in the system Li2S-P2S5 [J].
Mizuno, Fuminori ;
Hayashi, Akitoshi ;
Tadanaga, Kiyoharu ;
Tatsumisago, Masahiro .
SOLID STATE IONICS, 2006, 177 (26-32) :2721-2725
[8]   Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J].
Murugan, Ramaswamy ;
Thangadurai, Venkataraman ;
Weppner, Werner .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) :7778-7781
[9]   Enhanced energy density and electrochemical performance of all-solid-state lithium batteries through microstructural distribution of solid electrolyte [J].
Noh, Sungwoo ;
Nichols, William T. ;
Park, Chanhwi ;
Shin, Dongwook .
CERAMICS INTERNATIONAL, 2017, 43 (17) :15952-15958
[10]   Intefacial Observation between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy [J].
Sakuda, Atsushi ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :949-956