On Solution of Nonlinear Cubic Non-Homogeneous Schrodinger Equation

被引:0
作者
El-Tawil, Magdy A. [1 ]
Nasr, Sherif E. [2 ]
El Zoheiry, H. [1 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math, Giza 12211, Egypt
[2] Fayoum Univ, Fac Engn, Dept Engn Math, Al Fayyum, Egypt
来源
WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I | 2013年
关键词
Nonlinear Schrodinger Equation; Perturbation; Eigen function Expansion; Mathematica; Picard Approximation; NUMERICAL RESOLUTION; WAVE SOLUTIONS; DARK SOLITONS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a perturbing nonlinear cubic non-homogeneous Schrodinger equation, i partial derivative u(t, z)/partial derivative z + alpha (partial derivative boolean AND 2 u(t, z))/(partial derivative t boolean AND 2) + epsilon vertical bar u(t, z)vertical bar boolean AND 2 u(t, z) + i gamma u(t, z) = F_1 (t, z) + i F_2 (t, z), (t, z) is an element of (0, T) x (0, infinity) is studied under limited time interval, complex initial conditions and zero Neumann conditions. The perturbation method and Picard approximation together with the eigen function expansion and variational parameters methods are used to introduce an approximate solution for the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the solution algorithm is tested through computing the possible orders of approximations. The method of solution is illustrated through case studies and figures. Effect of time interval (T) had been studied through cases studies and figures.
引用
收藏
页码:42 / +
页数:2
相关论文
共 25 条
[1]   Solitons in media with random dispersive perturbations [J].
Abdullaev, FK ;
Garnier, J .
PHYSICA D, 1999, 134 (03) :303-315
[2]   Bright and dark solitons of the generalized nonlinear Schrodinger's equation [J].
Biswas, Anjan ;
Milovic, Daniela .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1473-1484
[3]  
Bruneau CH, 1999, NUMER METH PART D E, V15, P672, DOI 10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.3.CO
[4]  
2-A
[5]   Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation [J].
Carretero-Gonzalez, R. ;
Talley, J. D. ;
Chong, C. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :77-89
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[7]   Quantum noise in optical fibers. II. Raman jitter in soliton communications [J].
Corney, JF ;
Drummond, PD .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2001, 18 (02) :153-161
[8]   Numerical resolution of stochastic focusing NLS equations [J].
Debussche, A ;
Di Menza, L .
APPLIED MATHEMATICS LETTERS, 2002, 15 (06) :661-669
[9]   Numerical simulations of focusing stochastic nonlinear Schrodinger equations [J].
Debussche, A ;
Di Menza, L .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 162 (3-4) :131-154
[10]  
ELTAWIL A, J DIFFER EQUATIONS, DOI DOI 10.1155/2009/395894