Characterization of nuclear images based on analysis of fractional summation systems

被引:10
作者
Wu, HS
Einstein, AJ
Deligdisch, L
Kalir, T
Gil, J
机构
[1] CUNY Mt Sinai Sch Med, Dept Pathol, New York, NY 10029 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Med, New Brunswick, NJ 08903 USA
关键词
fractal; fractional summation; microscopic image; ovary cell; cancer;
D O I
10.1142/S0218348X04002483
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
While frequency-based methods for the characterization of fractals are popular and effective in many applications, they have limitations when applied to irregularly shaped images, such as nuclear images. The irregularity renders texture characterization by frequency domain methods, based upon Fourier transform, problematic. To address this situation, this paper presents an algorithm based upon the signal analysis in the spatial domain. An autocovariance function can be estimated regardless of the shape and size of regions where the image is defined. As in the continuous fractional Brownian motion (FBM) that results from inputting white noise into a specific fractional integral system, a discrete FBM can be related to white noise by a specific fractional summation system (FSS) that is linear, causal and shift-invariant. Although the method of direct sampling is not valid for converting a continuous fractional integral to a discrete fractional summation, discrete fractional summations similar to the sampled system functions can be obtained through an iterative process. While the continuous system function of a fractional integral is linear in the frequency domain when plotted in log-log scales, unfortunately, it is not true for the comparable discrete system function. The discrete system function is actually approximately linear in the log-log scales over a very limited range. The slope of the straight line that approximates the function curve in the mean-square-error (MSE) sense in a specific time range provides a description of the autocovariance function that reveals the statistical relations among the local textures. Applications to characterization of ovary nuclear images in groups of normal, atypical and cancer cases are studied and presented.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 25 条
[1]   FRACTAL CHARACTERIZATION BY FREQUENCY-ANALYSIS .1. SURFACES [J].
ANGUIANO, E ;
PANCORBO, M ;
AGUILAR, M .
JOURNAL OF MICROSCOPY-OXFORD, 1993, 172 :223-232
[2]  
[Anonymous], 1983, New York
[4]   TEXTURE SEGMENTATION USING FRACTAL DIMENSION [J].
CHAUDHURI, BB ;
SARKAR, N .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (01) :72-77
[5]   FRACTAL FEATURE ANALYSIS AND CLASSIFICATION IN MEDICAL IMAGING [J].
CHEN, CC ;
DAPONTE, JS ;
FOX, MD .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1989, 8 (02) :133-142
[6]   FRACTAL GEOMETRIC ANALYSIS OF COLORECTAL POLYPS [J].
CROSS, SS ;
BURY, JP ;
SILCOCKS, PB ;
STEPHENSON, TJ ;
COTTON, DWK .
JOURNAL OF PATHOLOGY, 1994, 172 (04) :317-323
[7]  
Einstein AJ, 1998, J PATHOL, V185, P366
[8]  
Landini G, 1996, J PATHOL, V179, P210
[9]   AN "ASYMPTOTIC FRACTAL" APPROACH TO THE MORPHOLOGY OF MALIGNANT CELL NUCLEI [J].
Landini, Gabriel ;
Rippin, John W. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1993, 1 (03) :326-335
[10]   Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification [J].
Liu, SC ;
Chang, S .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (08) :1176-1184