Fractional dynamics on networks: Emergence of anomalous diffusion and Levy flights

被引:61
|
作者
Riascos, A. P. [1 ]
Mateos, Jose L. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
关键词
COMPLEX NETWORKS; SCALING LAWS; WALK; PATTERNS; TRANSPORT; MOVEMENT; MOBILITY; MODELS;
D O I
10.1103/PhysRevE.90.032809
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Levy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Fractional diffusion and Levy stable processes
    West, BJ
    Grigolini, P
    Metzler, R
    Nonnenmacher, TF
    PHYSICAL REVIEW E, 1997, 55 (01): : 99 - 106
  • [42] Cauchy problem for nonlocal diffusion equations modelling Levy flights
    Sin, Chung-Sik
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (18) : 1 - 22
  • [43] Anomalous diffusion dynamics of learning in deep neural networks
    Chen, Guozhang
    Qu, Cheng Kevin
    Gong, Pulin
    NEURAL NETWORKS, 2022, 149 : 18 - 28
  • [44] Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [45] Hopping by Levy flights and nonlinear relation between diffusion and conductivity
    Arkhincheev, V
    NOISE IN COMPLEX SYSTEMS AND STOCHASTIC DYNAMICS II, 2004, 5471 : 560 - 567
  • [46] Operator Levy motion and multiscaling anomalous diffusion
    Meerschaert, MM
    Benson, DA
    Baeumer, B
    PHYSICAL REVIEW E, 2001, 63 (02)
  • [47] Persistence in Levy-flight anomalous diffusion
    Zanette, DH
    PHYSICAL REVIEW E, 1997, 55 (06): : 6632 - 6635
  • [48] TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS
    BLUMEN, A
    ZUMOFEN, G
    KLAFTER, J
    PHYSICAL REVIEW A, 1989, 40 (07) : 3964 - 3974
  • [49] Anomalous diffusion and Levy walks in optical lattices
    Marksteiner, S
    Ellinger, K
    Zoller, P
    PHYSICAL REVIEW A, 1996, 53 (05) : 3409 - 3430
  • [50] Persistence in Levy-flight anomalous diffusion
    Zanette, Damian H.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (6-A):