Fractional dynamics on networks: Emergence of anomalous diffusion and Levy flights

被引:61
|
作者
Riascos, A. P. [1 ]
Mateos, Jose L. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
关键词
COMPLEX NETWORKS; SCALING LAWS; WALK; PATTERNS; TRANSPORT; MOVEMENT; MOBILITY; MODELS;
D O I
10.1103/PhysRevE.90.032809
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Levy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Modeling anomalous diffusion by a subordinated fractional Levy-stable process
    Teuerle, Marek
    Wylomanska, Agnieszka
    Sikora, Grzegorz
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [22] Confined anomalous dynamics: A fractional diffusion approach
    Metzler, R
    Klafter, J
    DYNAMICS IN SMALL CONFINING SYSTEMS IV, 1999, 543 : 281 - 287
  • [23] Levy flights and nonlocal quantum dynamics
    Garbaczewski, Piotr
    Stephanovich, Vladimir
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
  • [24] LEVY FLIGHTS, OR NON-BROWNIAN DIFFUSION
    BOUCHAUD, JP
    OTT, A
    LANGEVIN, D
    URBACH, W
    RECHERCHE, 1991, 22 (230): : 378 - 380
  • [25] Optical Levy flights and super diffusion of light
    Wiersma, Diederik
    Barthelemy, Pierre
    Bertolotti, Jacopo
    QUANTUM SENSING AND NANOPHOTONIC DEVICES VI, 2009, 7222
  • [26] Levy Flights Diffusion with Drift in Heterogeneous Membranes
    Strzelewicz, Anna
    Krasowska, Monika
    Ciesla, Michal
    MEMBRANES, 2023, 13 (04)
  • [27] LEVY FLIGHTS, DYNAMICAL DUALITY AND FRACTIONAL QUANTUM MECHANICS
    Garbaczewski, Piotr
    ACTA PHYSICA POLONICA B, 2009, 40 (05): : 1353 - 1368
  • [28] On the Critical Delays of Mobile Networks Under Levy Walks and Levy Flights
    Lee, Kyunghan
    Kim, Yoora
    Chong, Song
    Rhee, Injong
    Yi, Yung
    Shroff, Ness B.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2013, 21 (05) : 1621 - 1635
  • [29] Slip diffusion and Levy flights of an adsorbed gold nanocluster
    Luedtke, WD
    Landman, U
    PHYSICAL REVIEW LETTERS, 1999, 82 (19) : 3835 - 3838
  • [30] Nonlinear relation between diffusion and conductivity for Levy flights
    Arkhincheev, VE
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 231 - 235