Fractional dynamics on networks: Emergence of anomalous diffusion and Levy flights

被引:61
|
作者
Riascos, A. P. [1 ]
Mateos, Jose L. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
关键词
COMPLEX NETWORKS; SCALING LAWS; WALK; PATTERNS; TRANSPORT; MOVEMENT; MOBILITY; MODELS;
D O I
10.1103/PhysRevE.90.032809
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Levy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Levy flights and anomalous diffusion in the stratosphere
    Seo, KH
    Bowman, KP
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D10) : 12295 - 12302
  • [2] Spatiotemporal dynamics in epidemic models with Levy flights: A fractional diffusion approach
    Zhao, Guangyu
    Ruan, Shigui
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 173 : 243 - 277
  • [3] Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, VE
    PHYSICAL REVIEW LETTERS, 2003, 91 (01)
  • [4] A fractional diffusion equation to describe Levy flights
    Chaves, AS
    PHYSICS LETTERS A, 1998, 239 (1-2) : 13 - 16
  • [5] Relaxation of optically excited carriers in graphene: Anomalous diffusion and Levy flights
    Briskot, U.
    Dmitriev, I. A.
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2014, 89 (07):
  • [6] Generalized fractional diffusion equations for accelerating subdiffusion and truncated Levy flights
    Chechkin, A. V.
    Gonchar, V. Yu.
    Gorenflo, R.
    Korabel, N.
    Sokolov, I. M.
    PHYSICAL REVIEW E, 2008, 78 (02)
  • [7] CHAOTIC ADVECTION IN A 2-DIMENSIONAL FLOW - LEVY FLIGHTS AND ANOMALOUS DIFFUSION
    SOLOMON, TH
    WEEKS, ER
    SWINNEY, HL
    PHYSICA D, 1994, 76 (1-3): : 70 - 84
  • [8] OBSERVATION OF ANOMALOUS DIFFUSION AND LEVY FLIGHTS IN A 2-DIMENSIONAL ROTATING FLOW
    SOLOMON, TH
    WEEKS, ER
    SWINNEY, HL
    PHYSICAL REVIEW LETTERS, 1993, 71 (24) : 3975 - 3978
  • [9] Anomalous diffusion and Levy flights in a two-dimensional time periodic flow
    Espa, S
    Cenedese, A
    JOURNAL OF VISUALIZATION, 2005, 8 (03) : 253 - 260
  • [10] HIGH ORDER ALGORITHMS FOR THE FRACTIONAL SUBSTANTIAL DIFFUSION EQUATION WITH TRUNCATED LEVY FLIGHTS
    Chen, Minghua
    Deng, Weihua
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A890 - A917