A Multigrid Method for Helmholtz Transmission Eigenvalue Problems

被引:68
作者
Ji, Xia [1 ]
Sun, Jiguang [2 ]
Xie, Hehu [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC,NCMIS, Beijing 100190, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Transmission eigenvalue; Multigrid method; Finite element method; ITERATIVE METHODS;
D O I
10.1007/s10915-013-9794-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the convergence of a finite element method for the computation of transmission eigenvalues and corresponding eigenfunctions. Based on the obtained error estimate results, we propose a multigrid method to solve the Helmholtz transmission eigenvalue problem. This new method needs only linear computational work. Numerical results are provided to validate the efficiency of the proposed method.
引用
收藏
页码:276 / 294
页数:19
相关论文
共 50 条
  • [41] Multigrid Method for Solving Helmholtz Equation with Fourth Order Accurate Compact Finite Difference Method
    Ahmed, B. S.
    Monaquel, S. J.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (05): : 1 - 4
  • [42] An integrated Davidson and multigrid solution approach for very large scale symmetric eigenvalue problems
    Feng, YT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (28) : 3543 - 3563
  • [43] Multigrid method with eighth-order compact finite difference scheme for Helmholtz equation
    Ghaffar, Fazal
    Ullah, Saif
    Badshah, Noor
    PHYSICA SCRIPTA, 2020, 95 (05)
  • [44] A virtual element method for the transmission eigenvalue problem
    Mora, David
    Velasquez, Ivan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14) : 2803 - 2831
  • [45] A MULTIGRID METHOD FOR VARIATIONAL-INEQUALITIES IN CONTACT PROBLEMS
    BELSKY, V
    COMPUTING, 1993, 51 (3-4) : 293 - 311
  • [46] Multigrid Method for Solving Inverse Problems for Heat Equation
    Al-Mahdawi, Hassan K. Ibrahim
    Abotaleb, Mostafa
    Alkattan, Hussein
    Tareq, Al-Mahdawi Zena
    Badr, Amr
    Kadi, Ammar
    MATHEMATICS, 2022, 10 (15)
  • [47] A Novel Domain Decomposition Method for Eigenvalue Problems
    Xu, Fei
    Chen, Shuangshuang
    Luo, Fusheng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [48] A Multilevel Newton’s Method for Eigenvalue Problems
    Yunhui He
    Yu Li
    Hehu Xie
    Chun’guang You
    Ning Zhang
    Applications of Mathematics, 2018, 63 : 281 - 303
  • [49] THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS
    Zhai, Qilong
    Hu, Xiaozhe
    Zhang, Ran
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (04) : 606 - 623
  • [50] A CONVERGENT ADAPTIVE METHOD FOR ELLIPTIC EIGENVALUE PROBLEMS
    Giani, S.
    Graham, I. G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1067 - 1091