Interacting antiferromagnetic and ferroelectric domain structures of multiferroics

被引:18
|
作者
Gareeva, Z. V. [1 ,2 ]
Zvezdin, A. K. [1 ,3 ]
机构
[1] Russian Acad Sci, AM Prokhorov Gen Phys Inst, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Mol & Crystal Phys, Ufa 450075, Russia
[3] Fdn ISI, I-10133 Turin, Italy
来源
关键词
BIFEO3; THIN-FILMS; ROOM-TEMPERATURE; TRANSITIONS;
D O I
10.1002/pssr.200802282
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The correlation between antiferromagnetic and ferroelectric domain structures in multiferroics has been studied. The role of magnetoelectric interactions in the formation of antiferromagnetic domain structure has been analysed. It has been shown that the major physical mechanism binding antiferromagnetic domains to ferroelectiec ones is the inhomogeneous flexomagnetoelectric interaction of the P-z[(l del)l(2)-l(2)(del l)] type. The dependences illustrating the rearrangement of anti-ferromagnetic domain patterns together with changes of the ferromagnetic domain thickness have been analyzed. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:79 / 81
页数:3
相关论文
共 50 条
  • [31] Effect of the nanopore on ferroelectric domain structures and switching properties
    Zhao, He
    Wu, Pingping
    Du, Lifei
    Du, Huiling
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 148 : 216 - 223
  • [32] Magnetic Topological Structures in Multiferroics
    Gareeva, Z.
    Zvezdin, K.
    Popkov, A.
    Zvezdin, A.
    ACTA PHYSICA POLONICA A, 2018, 133 (03) : 380 - 383
  • [33] DOMAIN EVOLUTION OF HERRINGBONE STRUCTURES IN FERROELECTRIC SINGLE CRYSTALS
    Tsou, N. T.
    Huber, J. E.
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2010, VOL. 1, 2010, : 285 - 293
  • [34] Mn substitution-induced revival of the ferroelectric antiferromagnetic phase in Bi1−xCaxFeO3−x/2 multiferroics
    V. A. Khomchenko
    L. C. J. Pereira
    J. A. Paixão
    Journal of Materials Science, 2015, 50 : 1740 - 1745
  • [35] Linear antiferrodistortive-antiferromagnetic effect in multiferroics: Physical manifestations
    Morozovska, Anna N.
    Khist, Victoria V.
    Glinchuk, Maya D.
    Gopalan, Venkatraman
    Eliseev, Eugene A.
    PHYSICAL REVIEW B, 2015, 92 (05)
  • [36] Pinning of magnetic domain walls in multiferroics
    Gareeva, Z. V.
    Zvezdin, A. K.
    EPL, 2010, 91 (04)
  • [37] Conduction at domain walls in oxide multiferroics
    Seidel, J.
    Martin, L. W.
    He, Q.
    Zhan, Q.
    Chu, Y. -H.
    Rother, A.
    Hawkridge, M. E.
    Maksymovych, P.
    Yu, P.
    Gajek, M.
    Balke, N.
    Kalinin, S. V.
    Gemming, S.
    Wang, F.
    Catalan, G.
    Scott, J. F.
    Spaldin, N. A.
    Orenstein, J.
    Ramesh, R.
    NATURE MATERIALS, 2009, 8 (03) : 229 - 234
  • [38] Conduction at domain walls in oxide multiferroics
    Seidel J.
    Martin L.W.
    He Q.
    Zhan Q.
    Chu Y.-H.
    Rother A.
    Hawkridge M.E.
    Maksymovych P.
    Yu P.
    Gajek M.
    Balke N.
    Kalinin S.V.
    Gemming S.
    Wang F.
    Catalan G.
    Scott J.F.
    Spaldin N.A.
    Orenstein J.
    Ramesh R.
    Nature Materials, 2009, 8 (3) : 229 - 234
  • [39] Theory of magnetization in multiferroics: Competition between ferromagnetic and antiferromagnetic domains
    Gomonay, Helen V.
    Korniienko, Ievgeniya G.
    Loktev, Vadim M.
    PHYSICAL REVIEW B, 2011, 83 (05)
  • [40] Three Dimensional Domain Structures for Domain Engineered Rhombohedral Perovskite Ferroelectric Crystals
    Erhart, Jiri
    Cao, Wenwu
    FERROELECTRICS, 2012, 426 : 13 - 20